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This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, 
nor any of their employees, makes any warranty, express or implied, or assumes any 
legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would 
not infringe privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise 
does not necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof.

KeyLogic Systems, Inc.’s contributions to this work were funded by the National Energy 
Technology Laboratory under the Mission Execution and Strategic Analysis contract 
(DE-FE0025912) for support services.
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• Development of new carbon capture technologies requires testing at multiple 

scales 

– Important to strategically allocate limited resources when conducting pilot-

scale testing in order to maximize learning 

 

• Quantification of uncertainty (UQ) necessary for rigorous analysis of risk, 

particularly that associated with process scale-up 

 

• Statistical approaches enable informed design and UQ simultaneously 

– In Bayesian framework, model uncertainty may be reduced through 

collection of data 

Motivation 
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• Sequential design of experiments (SDoE) applied during five week campaign 

at Norway’s Technology Centre Mongstad in summer 2018 

– Process previously demonstrated at smaller scale (0.5 MWe) National 

Carbon Capture Center in summer 2017 

 

• Data collected over a wide operating space (including variation in flowrates of 

solvent, flue gas, and reboiler steam as well as CO2 concentration in flue 

gas)  

– Over full input space, model prediction of uncertainty in CO2 capture 

percentage reduced by an average of 58.0 ± 4.7% when incorporating 

experimental data through Bayesian inference 

Executive Summary 
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Stochastic Modeling Framework 
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Figure taken from Morgan et al., Ind Eng Chem Res, 2018, 57, 10464-10481   



Stochastic Process Modeling Approach 
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Figure taken from Morgan et al., Ind Eng Chem Res, 2018, 57, 10464-10481   



Role of FOQUS in Solvent Modeling Framework 

8 

Open-source software available at: 

https://github.com/CCSI-Toolset 

Uncertainty Tab – PSUADE 

used for Bayesian inference 

and surrogate modeling  

SDoE Tab – Currently being 

developed for streamlining 

process described in this work 

Flowsheet Tab – Used for 

propagating uncertainty 

through simulation model 



• Develop systematic approach to conducting pilot plant testing, regardless of 

scale, process configuration, technology type, etc. 

• Ensure right data is collected 

• Maximize value of data collected 

 

• Design of Experiments (DoE) is a powerful tool to accelerate learning by 

targeting maximally useful input combinations to match experiment goals 

 

• Sequential DoE (SDoE) allows for incorporation of information from an 

experiment as it is being run, by updating input selection criteria based on 

new information 

Objectives for Pilot Testing 
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Ultimate Goal: Reduce technical risk associated with scale-up 



SDoE Process 

10 

Confidence Interval Calculation 

Ω𝑖 = 𝑦 𝑥 𝑖 , 𝜃 1 , … , 𝑦 𝑥 𝑖 , 𝜃 𝑀  

𝐶𝐼𝛼 
𝑥 𝑖  𝜃 1,𝜃 2

= 𝐹1−𝛼 2 (Ω𝑖) − 𝐹𝛼 2 (Ω𝑖) 

𝜃 = [𝜃 1 𝜃 2] 



• Space-filling designs 

– Minimax: Ensure that all points in the candidate set (𝑥 ) are close to a point 

in the design (𝑥 𝑡𝑒𝑠𝑡) 

– Maximin: Ensure that all points in the chosen design (𝑥 𝑡𝑒𝑠𝑡) are not too 

close together 

 

• Various classes of uncertainty-based designs 

– Minimize variance of parameter estimations 

– Minimize variance of model predictions 

• G-optimality: Minimizing the maximum output predicted variance in the candidate set 

Utility Functions for SDoE 
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SDoE Applied at Technology Centre Mongstad – Summer 2018 
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• The world’s largest facility for 

testing and improving CO2 capture 

technologies 

• Located next to Equinor refinery in 

Mongstad, Norway 

• Joint venture set up by Gassnova, 

Equinor, Total, and Shell 

• Two flue gas sources 

– Combined Cycle Gas Turbine 

(CCGT)  

– Residual Fluidized Catalytic 

Cracker (RFCC) 
www.tcmda.com 



Phases of Test Campaign 
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Phase 1 

Space-filling design for testing predictability of existing model 

Phase 2 

Selection of points for testing based on economic objective 

function 

Phase 3 

Sequential DoE 

Selection of points based on G-optimality: minimize the maximum 

model prediction variance in the design space  

Phase 4-5 

Minimization of reboiler duty 

Variation in absorber packing height 

Rich solvent bypass configuration 



TCM Model Predictions (Deterministic) 
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Absorber Performance Stripper Performance 

Operational issues at 

low solvent flowrates 

Data include variation in flowrates of solvent, flue gas, and steam as well as CO2 

composition in flow gas  

Dashed lines represent ±10% 



TCM Stripper Performance 
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Two strippers available for use at TCM 

• Stripper designed for CCGT flue gas (~3.5% 

CO2) [Capacity: 80 tonne CO2/day] 

• Stripper designed for RFCC flue gas (~13-

14% CO2) [Capacity: 275 tonne CO2/day] 

 

CCSI2 campaign used RFCC stripper and CCGT 

flue gas with recycle (8-10% CO2), thus leading 

to over-designed stripper when running process 

with low flowrates  

 

Potential maldistribution effect at low 

flowrate not captured in Aspen Plus rate-

based process model 



Results – TCM SDoE 
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Prior CI Width:  10.5 ± 1.5 

Posterior CI Width: 4.4 ± 0.4 

Candidate set includes variation in: 

 

- Solvent Circulation Rate 

- Flue Gas flowrate and CO2 concentration 

- Reboiler steam flowrate  

Reduction in CO2 Capture Percentage (First Iteration) Update in Parameter Distributions 

for Absorber Packing 

Average reduction in uncertainty: 58.0 ± 4.7% 



• Operated pilot plant with portion of rich solvent by-passing lean-rich heat 

exchanger routed to water wash bed of stripper column 

 

• Reduced absorber packing height to 18 m (Phase 4) and 12 m (Phase 5) 

 

• Space-filling design used to minimize specific reboiler duty (SRD) by varying 

solvent circulation rate 

– Fixed flowrate and composition of flue gas (50,000 sm3/hr; 8 mol% CO2) 

and percentage of CO2 capture (85%)   

Test Phases 4-5 
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Sample Results – Phase 4 
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Statistical discrepancy model developed 

for reboiler steam requirement in order 

to account for mismatch between data 

and model prediction of SRD 

𝑚 𝑠𝑡𝑒𝑎𝑚 = 𝛽0 + 𝛽1 ∗ 𝐿𝑟𝑖𝑐ℎ + 𝛽2 ∗ 𝑏𝑦𝑝𝑎𝑠𝑠 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 

𝑚 𝑠𝑡𝑒𝑎𝑚 = 𝑆𝑐𝑎𝑙𝑐 + max(0, ∆𝑚 𝑠𝑡𝑒𝑎𝑚) 



Future Work 
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Industry Partner Technology  

Research Triangle Institute (RTI) Non Aqueous Solvent 

SRI International Mixed Salt Solvent 

Membrane Technology Research (MTR) Membrane 

TDA Research + MTR Sorbent/Membrane Hybrid System 

Upcoming SDoE projects at TCM  



• Stochastic modeling framework enables quantification of model input 

uncertainty and propagation through model for risk assessment and 

economic analysis  

 

• SDoE methodology has been shown to effective for informed design of pilot 

test campaigns and reduction of model uncertainty 

– Demonstrates promise of methodology for accelerating development of 

novel CO2 capture technologies 

 

• Future work will focus on application of SDoE for novel CO2 capture 

technologies, specifically for upcoming projects at TCM 

Summary and Conclusions 
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For more information 

https://www.acceleratecarboncapture.org/  

 
joshua.morgan@netl.doe.gov 

 

 

https://www.acceleratecarboncapture.org/
mailto:joshua.morgan@netl.doe.gov


Backup Slides 
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Bayesian Inference 

23 

Example Likelihood Function:  𝐿 𝒁 𝜽 = exp −0.5  
𝐹∗ 𝒙𝒊,𝜽 − 𝑍(𝒙𝒊)

2

𝑀𝜎𝑖
2

𝑀

𝑖=1

 

Posterior Likelihood 

𝜋 𝜃 𝑍 ∝ 𝑃 𝜃 ∗ 𝐿 𝑍 𝜃  

Prior 

Representation of Prior and Posterior 

Distributions:  



Surrogate Modeling 
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• Necessary for reducing computational expense of Bayesian inference, 

parameter screening, etc. 

• Various methods available in FOQUS  

– Multivariate Adaptive Regression Splines generally used in this work 

 

𝑓 𝑢 = 𝐵0 +  𝑐𝑖𝐵𝑖(𝑢 )

𝑁

𝑖=1

 

 

• 𝐵𝑖 𝑢  is either a constant, hinge function (e.g. max (0, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑥𝑖)), or 

product of two or more hinge functions  

• Model fit to output values from rigorous simulation 

𝑢 = [𝑥 𝜃 ] 



Bayesian Inference (Hierarchical Method) 
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𝜋𝑗 𝜃 1 𝑍, 𝜃 2
𝑗

∝ 𝑃(𝜃 1)𝐿 𝑍 𝜃 2
𝑗

, 𝜃 1  

Sample from constant distribution 

𝜃 2
𝑗

, ∀ 𝑗 = 1, … , 𝑁 

Parameters 𝜃 1 have variable uncertainty Parameters 𝜃 2 have fixed uncertainty 

Bayesian update 

Marginalization: Combine all 𝜋𝑗 to get 

final posterior   𝜋 𝜃 1 𝑍, 𝜃 2
𝑗  
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Motivation: Test Campaigns at National Carbon Capture Center 


