

Intensified post combustion solvent based CO₂ capture using a RPB absorber and rotating regenerator

Jonathan Lee, Pierrot Attidekou, Tolu Kolawole, James Hendry Process Intensification Group, School of Engineering, Newcastle University, UK.

> Robin Schulz, Thomas Rabold Julius Montz GmbH - Hofstr. 82 - 40723 Hilden, Germany

Talk Outline

- What is a rotating packed bed.
- Carbon capture using rotating packed beds.
- Effect of flow configuration on CO₂ absorption.
- Integrated solvent regenerator and reboiler
- Conclusions
- Future work

What is a Rotating Packed Bed (RPB)?

d_i depends on the outlet gas velocity

z depends on the flooding limit at d_i

 $d_{\rm o}$ depends on the mass transfer duty

z is comparable to packed column diameter

 $d_o - d_i$ is comparable to packed column height

Rotation decreases both z and d_o, and reduces packing volume by 1-2 orders of magnitude

Civil engineering costs eliminated

Carbon Capture Using RPB

CO₂ Capture Using RPB

280 mm diameter gas absorption rig

Experimental Setup

Packing Materials

Stack of expanded SS316 mesh sheets

 $a_P = 663 \text{ m}^2 \text{ m}^{-3}$ $\epsilon = 0.80$

Montz structured packing - first prototype

 $a_P = 830 \text{ m}^2 \text{ m}^{-3}$ $\epsilon = 0.94$

Gas-liquid flow configurations

- High K_GA
- High ΔP
- High Power_{lia}

gas flow

- Low K_GA
- Low ΔP
- High Power_{lia}

- Intermediate K_GA
- Low ΔP
- Lower Power_{lia}
- Design of Experiments: 3-level face centered composite rpm - 300, 650, 1000 $(L/G)_{mass} - 2, 4, 6$

MEA - 30%, 50%, 70%

18th June 2019

Comparison of Expamet and Montz

30 wt% MEA, $(L/G)_{mass} = 4$ ratio, counter-current flow

Comparison of Counter and Co Flow

30 wt% MEA, (L/G)_{mass} = 4,Expamet Packing

Comparison of Pressure Drop

30 wt% MEA, $(L/G)_{mass} = 4$

column.

Construction of the Pilot Scale Unit

Experimental Setup

Reboiler Duty as a function of amine strength

- Compare to data of Sakwattanapong ٠ (2005)
- 30-50% reduction in loading. ٠
- Reboiler duty decreases with increasing ٠ MEA solution strength due to decreasing reflux flow.
- For 30 mass% amine there is a saving of ٠ 13% on the reboiler duty compared to a packed column and separate reboiler.

Conclusions

- RPB significantly increases rate of mass transfer compared to a packed column.
- The flow configuration of the absorber has a significant effect on the rate of mass transfer and the pressure drop.
- The reboiler and regenerator columns have been integrated.
- As well as reducing the size of the regenerator and reboiler, integration of the units reduces the reboiler energy use.

18th June 2019

Future Work

Project Artemis – Testing of RPB and ISR for 90% capture of CO₂

- Testing to achieve TRL 7.
- Work funded by UK government and CCSL.
- In partnership with University Sheffield.
- Test rig will be sited at CPACT near Sheffield
- RPB Absorber will be commissioned in July 2019.
- ISR will be commissioned in September 2019.

Acknowledgements

EU Horizon 2020 grant agreement 727503.

Grant Ref. EP/M001458/1

Engineering and Physical Sciences Research Council

Department for Business, Energy & Industrial Strategy

Lab scale rotating test rigs are available for solvent testing

Questions?

18th June 2019