

FCH JU Projects Workshop

Degradation of PEM Fuel Cells - experience exchange and discussions

Results from STAYERS project

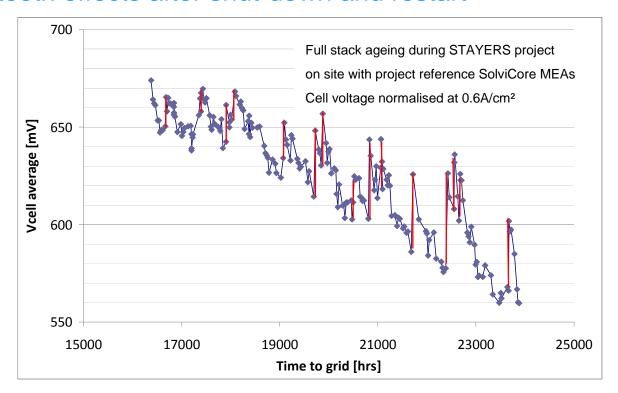
Thomas Martin, Stefan Andersch, Daniele Facchi, Jens-Peter Suchsland, Alessandro Ghielmi

SolviCore GmbH & Co. KG thomas.martin@solvicore.com

Content

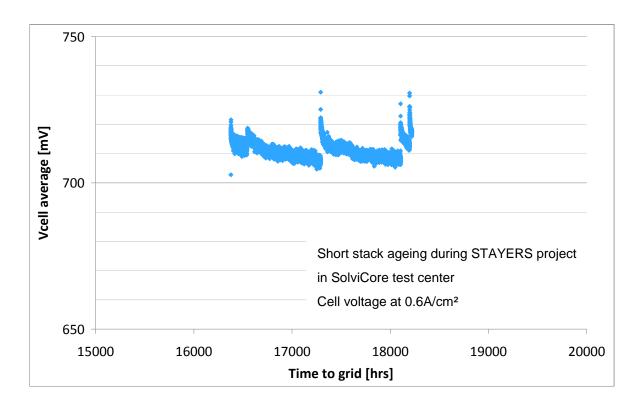
Components investigated in the presentation	Conditions applied
membrane	stationary @ 0.6A/cm² (SC) or 0.5A/cm² (Delfzijl)
MEA	humidification ca. 80% inlet
catalyst/electrode	Temperature 65°C

- **Comparison field test vs. lab test**
- Understanding of the degradation patterns
 - Reversible
 - Retrievable (also named as recoverable)
 - Irreversible
 - Possible causes of different degradation patterns?
- **Impurity tests**
 - Brief literature overview on NO₂ or SO₂ poisoning
 - Cathode: NO₂, SO₂
 - Anode: CO
- Conclusion

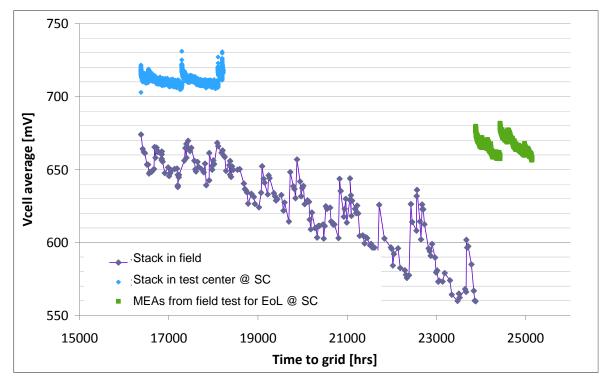

Comparison field test vs. lab test

Ageing in field test

- Stacks in field (i.e. Delfzijl PPP) can show
 - High degradation rates
 - Saw-tooth effects after shut-down and restart


Similar behaviour can be observed in some customers test centers

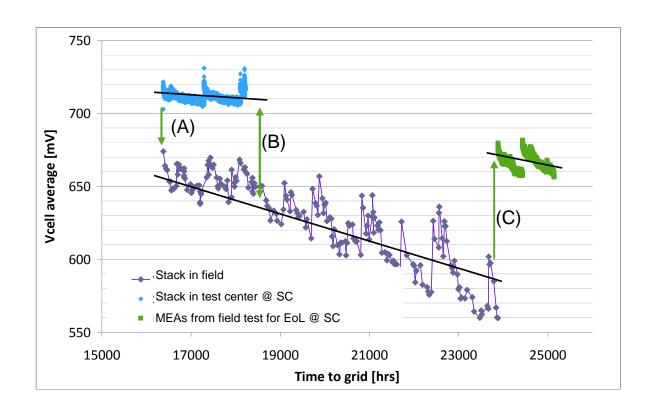
Ageing in lab test


- In SolviCore test center, with same MEAs
 - Degradation observed are lower,
 - Saw-tooth effect can be observed, too

Comparison ageing in lab vs. field test

Significantly different behaviours observed:

- After stack disassembly the MEAs have been re-assembled in small stack at SolviCore for EoL evaluation
 - Stronger decay (saw tooth reversible) after ageing
- We Higher performance than in field Confidential


Comparison ageing in lab vs. field test

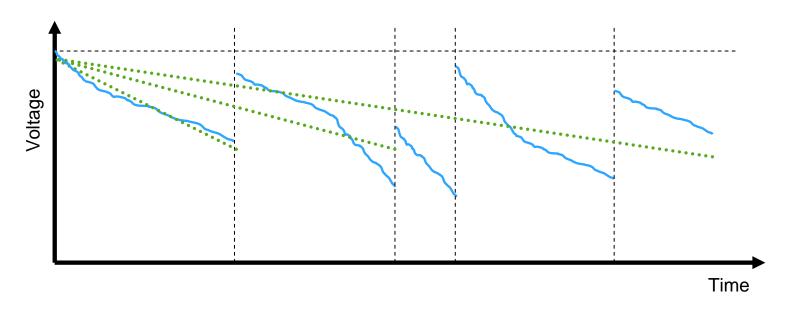
- (A) Performance gap at BoL
- (B) Differences in degradation trends
- (C) EoL performance gain in Lab

Degradation patterns

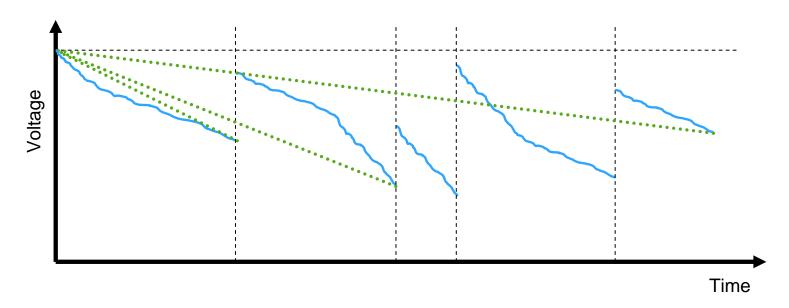
Definitions

- Irreversible degradation: performance loss that will not be recovered (e.g. catalyst activity loss)
- Reversible degradation: performance loss that will be simply recovered with simple stop and re-start (e.g. channel flooding)
- Retrievable degradation: performance loss which can be recovered applying a specific protocol (e.g. impurities)

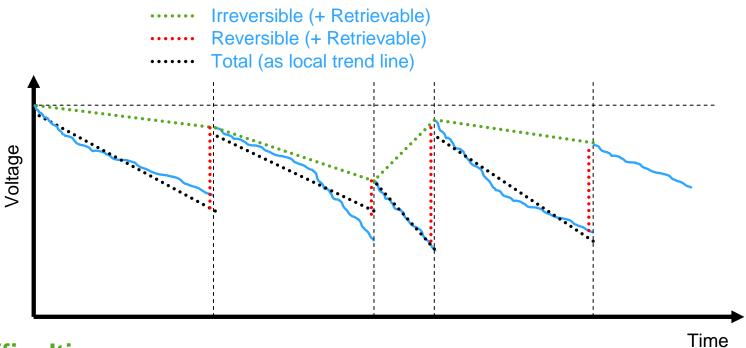
We will be a second of the se


- Case 1 Trend line
- Case 2 Cell potential difference from BoL to EoT
- Case 3 Distinguish between reversible, retrievable and irreversible decays
- Case 4 Irreversible decays

Case 1 - Trend line


Good mean value between reversible and irreversible

Case 2 - Cell potential difference from BoL to EoT

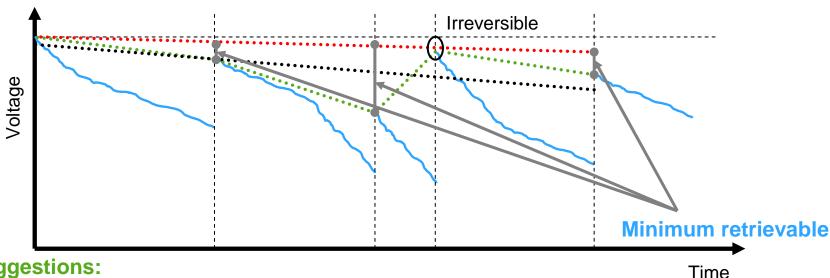


Strongly influenced by the last hours of test

Case 3 - Distinguish between reversible, retrievable and irreversible decays

- Difficulties:
 - Will depend on several parameters like:
 - Shut-down protocol (controlled or uncontrolled)
 - Gas quality
- Confidential

 Off-time (SO₂ and similar effects see following slides)



Case 4 – irreversible and retrievable decay as trend line

Irreversible + Retrievable

Average from irreversible and retrievable – average of the green lines

Overall irreversible – minimum observed loss

- **Suggestions:**
 - Use irreversible degradation (e.g. for purpose of lifetime prediction)
 - As the minimum delta (red curve)
 - But still depending on environment
 - Use reversible and retrievable
 - as additional input to steer development
 - Not a predictive tool!

Possible causes of degradation?

For irreversible degradation

- MEA composition
 - Internal poisoning,
 - Change in key physico-chemical properties, etc.
- Stack environment
 - Stack regulation
 - temperature,
 - fuel starvation,
 - load cycling, etc.
 - Irreversible poisoning (H₂S, cations)

For reversible degradation

- MEA composition (poisoning)
- Stack environment
 - Anode and cathode gas quality
 - Stack regulation
 - Flooding, etc.

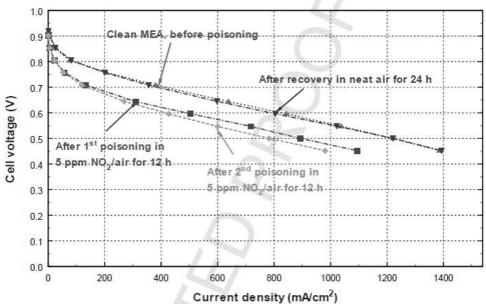
For retrievable (recoverable) degradation

- Stack control
 - Shut-down procedures

Impurity tests

Impurities: General

X.Cheng et al. / Journal of Power Sources 165 (2007) 739-756


Table 1 Major contaminants identified in the operation of PEM fuel cells

Impurity source	Typical contaminant
Air	N_2 , NO_x (NO , NO_2), SO_x (SO_2 , SO_3)
	NH_3, O_3
Reformate hydrogen	$CO, CO_2, H_2S, NH_3, CH_4$
Bipolar metal plates (end plates)	Fe^{3+} , Ni^{2+} , Cu^{2+} , Cr^{3+}
Membranes (Nafion®)	Na^{+}, Ca^{2+}
Sealing gasket	Si
Coolants, DI water	Si, Al, S, K, Fe, Cu, Cl, V, Cr
Battlefield pollutants	SO ₂ , NO ₂ , CO, propane, benzene
Compressors	Oils

NO₂ poisoning in literature

R.Mohtadi et al. / Journal of Power Sources (2004)

Decay is reversible going back to neat air.

Fig. 4. Polarization for steady state performance showing the effects of 5 ppm NO2/air.

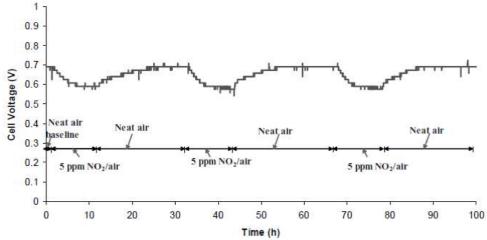


Fig. 16. Initial durability tests in 5 ppm NO₂/air.

NO₂ poisoning in literature

R.Mohtadi et al. / Journal of Power Sources (2004)

CV does not show any oxidation peak. It is supposed that NO2 poisons the ionomer after ammonia formation:

$$NO_2(g) + 8H^+ + 7e^- \rightarrow NH_4^+ + 2H_2O$$
, $E^0 = +0.897$

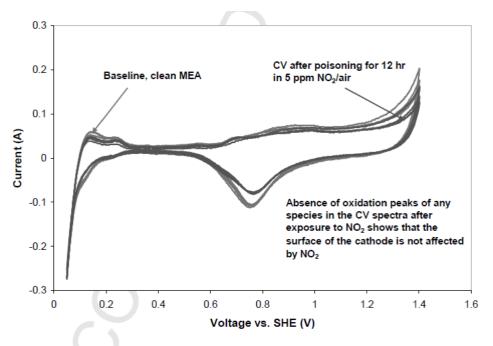


Fig. 6. Cyclic voltammetry spectra obtained after cathode exposure to 5 ppm NO2/air.

SO₂ poisoning in literature

DOE Hydrogen Program FY 2005 Progress Report

VII.I.4 Effect of Fuel and Air Impurities on PEM Fuel Cell Performance

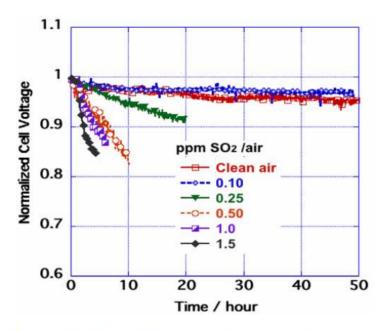


Figure 1. Effect of SO₂ Concentration on Cathode
Performance at 80 °C (A total of 0.010 mmol of SO₂ was injected at the cathode at each concentration. Cell size: 50 cm²; anode and cathode loadings (mg Pt/cm²): 0.21 and 0.22 respectively. Cell run at 0.6 A/cm² constant current.)

SO₂ has a much stronger influence on performance than NO₂

SO₂ poisoning in literature

DOE Hydrogen Program FY 2005 Progress Report

VII.I.4 Effect of Fuel and Air Impurities on PEM Fuel Cell Performance

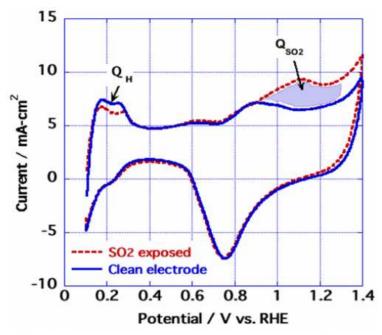
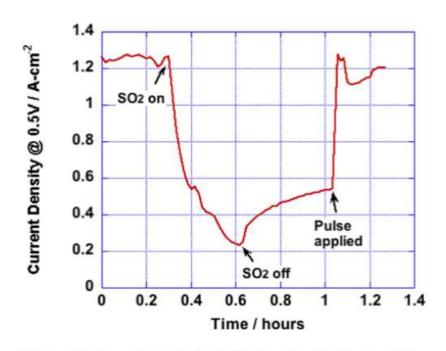
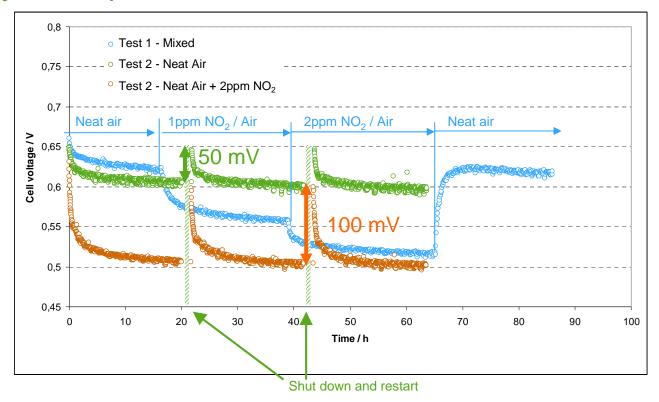


Figure 2. CVs of a Cathode Electrode Exposed to 1.5 ppm SO₂ for 4.3 hr at 80 °C (The CV of the clean electrode is also shown for comparison. Cell size: 50 cm²; anode and cathode loadings (mg Pt/cm²): 0.21 and 0.22 respectively. Scan rate: 50 mV/s.)

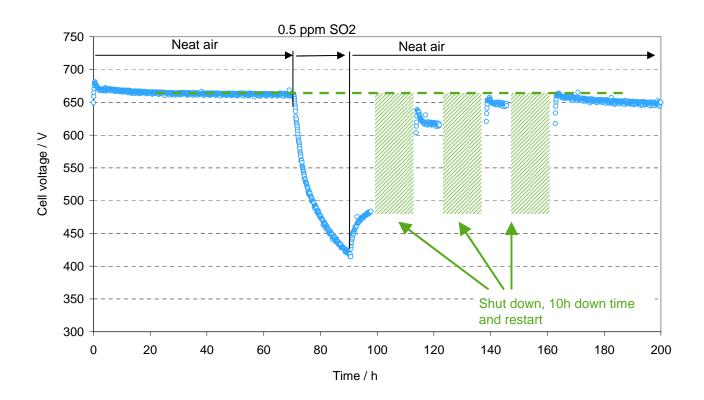



Figure 5. Cleaning a Cathode Poisoned with 10 ppm SO₂ at 80 °C (A 1.4 volt pulse was applied with an external power supply for 5 seconds. Anode and cathode loadings in mg Pt/cm²: 0.18 and 0.22 respectively. Cell size: 5 cm².)

A cleaning effect of the cathode electrode can be obtained applying a voltage of 1.4 V

NO₂ poisoning test at SolviCore

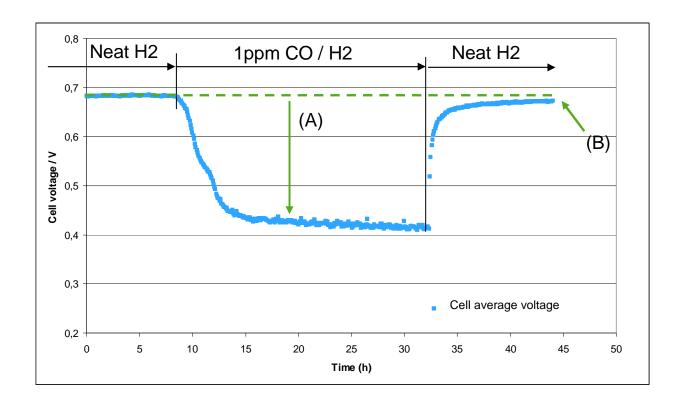
Comparison of neat Air vs. NO₂/Air on project reference SolviCore MEA (not impurity tolerant)



- The loss is fully reversible switching back to neat air
- Even with neat air, different NO₂ concentration could explain initial performance differences

SO₂ poisoning test at SolviCore

♥ Comparison of Neat Air vs. SO₂/Air on project reference SolviCore MEA (not impurity tolerant)



The loss can be recovered with dedicated shut-down / down time procedures

CO poisoning test at SolviCore

Solution Effect of 1ppm CO on project reference SC Anode (not impurity tolerant)

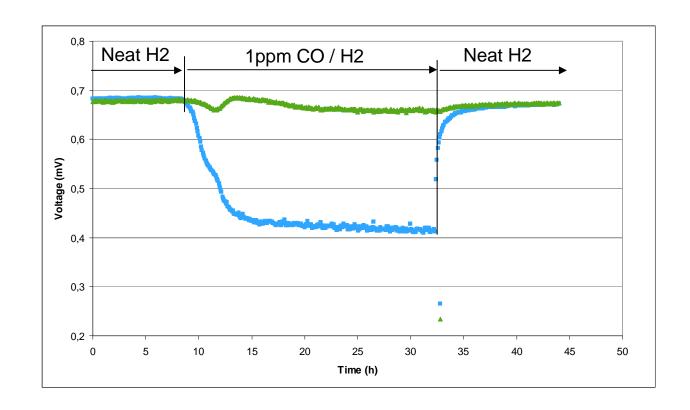
- Reversible loss of ca. 250mV
- Irreversible loss of ca. 10mV

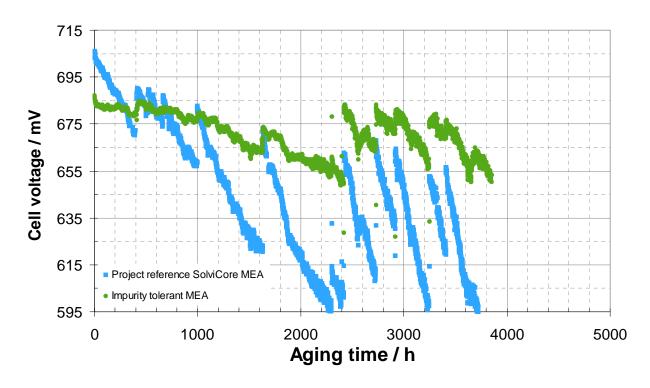
Degradation has to be addressed on system side as well as on MEA side

On MEA side:

- Solutions possible
 - Catalyst type
 - Catalyst layer properties and composition
- Focus: keep cost compatible with market request

On System side:


- Better filtering capacity
- Better recovery protocols after "pollution peaks"
- Optimise system conditions to reduce reversible and irreversible degradations



Example of SolviCore CO-tolerant anode (for 1ppm)

Improvement in lifetime using impurity tolerant MEA

Lifetime prediction based on irreversible degradation:

- Project reference SolviCore MEA: 6.500h before Nedstack EoL criteria
- Impurity tolerant MEA: 31.000h before Nedstack EoL criteria

Main degradation mechanisms		Further details
(irreversible/reversible)		
	2	A: CO, C: SOx, NOx> any coumpounds not identified yet
Contamination (A/C)		will be impacted by ECSA losses
ECSA loss (A/C)	1	particle growth/Pt dissolution or carbon corrosion?
increase electronic resistance (A/C)	3	electronic vs. proton resistance
membrane - increase of proton resistance	4	
membrane - increase in H2 X-over	6	
flooding / loss of hydrophobicity (A/C)	5	Guess: Method missing

Confidential 28

Acknowledgements

The FCH-JU is greatfully acknowledged for financial support through the STAYERs project – FCH JU 256721

Thank you for your attention