

Efficient Use of Energy Converting Applications

Nadine Jacobs

Agenda

- Introduction NEXT ENERGY
- EURECA
 - Principal objectives •
 - **Research** areas •
 - Test protocols •
- Stacktest
 - **Stadardisation**
- DEMMEA
 - **Degradation Mechanisms in HT-PEM MEAs** lacksquare
 - **Compression Unit Instrumentation**
 - Results from recent experiments
- Summary and outlook

BAE-Fakolkungssettuurs

Energy Research for the Future

- New building since August 2009
- 4150 m² floor space
- 2330 m² space for R&D-activities

Nadine Jacobs 03/04/2013

NEXT ENERGY – Facts and Figures

- About 95 employees in R&D and administration
- Founded in March 2007 as independent Research Institute at the Carl-von-Ossietzky-University Oldenburg
- Organised as a non-profit association with EWE as a main sponsor as well as the University of Oldenburg and the state Lower Saxony as members
- Research in the fields of Renewable Energies, Energy Infrastructure and Energy Efficiency

NEXT ENERGY EISENHUTH

Research and Development

Photovoltaics

Power from light and thin layers

Energy Storage

From electrochemistry to grid integration

Fuel Cells

Power and heat efficiency with future

Head of Division Dr. Karsten von Maydell

Head of Division Dr. Wedigo von Wedel

Head of Division Dr. Alexander Dyck

NEXT ENERGY (EISENHUIH)

5

Fuel Cell Research Topics

Fuel Cells Power and heat efficiency with future

Division Head: Dr. Alexander Dyck

Micro-CHP-Systems System Test and Integration, HEMS

Characterisation Analytics and Methods, Coatings, Degradation

Materials Catalysts and Membranes for AEMFC and Electrochemistry

Nadine Jacobs 03/04/2013 NEXT ENERGY (EISENHUTH)

EURECA - Consortium

- Efficient Use of Energy Converting Applications (Grant Agreement N° 303024)
- Project run time: 01/07/2012 30/06/2015
- Consortium:

Principal Objectives

- Developing the next generation of a micro combined Heat-and-Power (µ-CHP) systems based on advanced PEM stack technology
- Overcome the disadvantages of complex gas purification, gas humidification, and the low temperature gradient for heat exchangers in a heating system
- Developing a new stack generation with operating temperatures of 90 to 120 °C
- A less complicated, high efficient, and therefore a robust µ-CHP system with reduced costs

NEXT ENERGY (EISENHUIH)

IK4 CIDETEC Fraunhofer

8

Development on MEA and BBP

• MEA

Nadine Jacobs

03/04/2013

- Development and qualification of membranes
- Development and qualification of catalyst materials and active layers
- Performance, lifetime and degradation analysis
- MEA preparation, up-scaling and manufacturing of EURECA MEAs

Bipolar Plate and Gaskets

- Improvement of BBP materials
- BBP production
- New Gasket concept
- Modelling the flow
- Testing the BBP (Conductivity, Cycling, CV)

http://www.eisenhuth.com/pages/bipolar.h tml

9

Development on Stack and System

- Adaption of cell design, stack design and • materials to EURECA stack
- Modelling on flow and concentration • distribution
- Stack performance and degradation •
- Integration into the system

System

- Integration of EURECA stack into µ-CHP • system
- µ-CHP-system performance and degradation •

eureca

- Developing a full set of testing procedures addressing:
 - Function and performance
 - Durability and degradation
 - Safety and environment
- Indentify test modules and programs to address degradation under different conditions and for various applications

Different Levels of Degradation Investigations

- Investigation of the loss of efficiency as a function of time on:
 - CHP Units
 - Fuel Cell Stacks
 - MEAs
 - Single Components
- Each component in a MEA contributes to the overall efficiency loss!

Parameters Influencing the Degradation of a MEA

- Operating temperature •
- System pressure
- Mechanical MEA fixture and Compression (commercial or individual ones, flow fields ...)
- Cooling
- Gas volume flows, composition, impurities, temperatures • and humidification (anode and cathode)
- FC test station or setup
- Startup protocols and conditioning
- Electronic load profiles •
- Start-stop cycling
-

eureca

Parameters Influencing the Degradation of a MEA

eureca

- Membrane materials and composition
- GDL materials and surface modification for hydrophobicity
- Catalyst materials and composition
- Electrolyte (HT-PEM)
- Chemical resistance of all components against hot H₃PO₄
- Catalyst dissolution, migration, precipitation and agglomeration
- Carbon corrosion
- Chemical reactions caused by different radicals or H₂O₂
- (Gasket materials)
- (Bipolar plate materials and composition, surface coatings and flow fields)
- More?

Role of Compression for Polymer/H₃**PO**₄-**MEA**

Possible effect on	Possible consequence for	Methods
GDL porosity	Reactant supply	EIS, IV
Membrane thickness	Ionic resistance, reactant crossover, internal short circuit	EIS, LSV
H ₃ PO ₄ penetration into CL	3-phase reaction zone, flooding (reactant supply)	CV, EIS
Electrical contact	Electrical resistance	EIS, IV
Material integrity	Physical modifications and damages	Imaging techniques

FORTH

d = 0.2 mm

Requirement: steady compression

 $P_{c} < P_{c,0}$

 $P_{C} > P_{C,0}$

MEA Analysis: Details

MEA Property	# A	#B
Type (GDL)	Celtec [®] -P2100 (Woven carbon cloth)	Celtec [®] -P2100 (Woven carbon cloth)
Serial-Nr.	#14799-037	#14799-038
Thickness [µm]	929	917
Active area [cm ²]	20.25	20.25
Flow field design	Grid	5-Fold serpentine
 Nominal area [cm²] Total land area [cm²] 	25 9.49	25 13.35

Dietrichs, A.; Wagner, P. ECS Transactions 50(2) 1137-1153 (2012)

Results: MEA Thickness

- Contact pressure variation
 - Nominal contact pressure range: 0.2 2.5 MPa
 - Order of change: from low to high

Grid Serpentine

Dietrichs, A.; Wagner, P. ECS Transactions 50(2) 1137-1153 (2012)

Results: IV_{iR}-free-Curves and EIS-Spectra

Nadine Jacobs 03/04/2013

NEXT ENERGY (EISENHUTH) EME-Foxo/kung-contrum file throngistic knallogie e.V.

IK4QCIDETEC Z Fraunhofer int ouse Cegasa

0.5 MPa 0.75 MPa 1.0 MPa 1.5 MPa 2.0 MPa 2.5 MPa

eureca

Results: CV-Analysis and LSV-Analysis

int ouse

FORTH

Imaging with µ-CT

• Fresh MEA

 Compressed MEA (2.5MPa) within compression tool (channelland)

Submitted for publication: Dietrichs et al., Journal of Applied Electrochemistry, Special Issue "ELMEMPRO"

• MEA thickness changes und compression

Submitted for publication: Dietrichs et al., Journal of Applied Electrochemistry, Special Issue "ELMEMPRO"

Coupling of Results to Imaging with µ-CT

 MEA compressed at 2.5 MPa after removal from compression tool and 22h relaxation time

Submitted for publication: Dietrichs et al., Journal of Applied Electrochemistry, Special Issue "ELMEMPRO"

Summary and Outlook

- Development of next generation μ -CHP
 - MEA, BBP, Stack, System
- Comparable testing conditions (FCTES^{QA})
- Improving performance and lifetime, reduce degradation
- Standardization of testing for FCs and Stacks
- Use of electrochemical and imaging techniques (μ -CT, SEM)
- Influence of compression during operation with varying experimental conditions
 - Distinction of reversible and irreversible effects
- Determination of membrane and contact resistances during compression

Competences at NEXT ENERGY

Methode	Application example
EIS	MEA- degradation
CV	Active area
LSV	
EQCM	Catalyst dissolution
IV	MEA performance
RRDE	Catalyst
IC	Product water analysis
ICP-MS	Product water analysis
TGA/GC-MS	Membrane degradation
Thermal analysis (DSC, TGA, DMA)	
μ-СТ	Mechanical Damages
SEM, EDX, FIB	
Chemical analysis	

28

PART 1 Components investigated - please fill in actual operating details in green **Conditions applied** fields membrane conductivity as a function of humidification and temperature MEA influence of compression, range 0.2MPa-2.5MPa HT-PEM (constant load 1000h, load cycling 1000h, cathode: air/O₂) OCV (4min, 0.3 A/cm² 16 min) humidification (dry/humid; RH=0) ... Temperature (high/low; T=160/170°C) ... catalyst/electrode EASA ICP-MS: product water analysis (Pt-loss) IC/ICP-MS: H₃PO₄-loss GDL influence of compression, range 0.2MPa-2.5MPa imaging methods SEM, EDX, μ-CT, microscopy cell plates imaging methods SEM,EDX, microscopy phosphate loss of MEA long term corrosion in hot H₃PO₄ (160°C) seals imaging methods SEM,EDX, microscopy

EORTH

Ø

PART 2

Main degradation mechanisms (irreversible/reversible) - ran	k from 1-6	Further details - please specify further if possible			
confirmed/expected contribution to cell voltage decay (Anode/Cathode)					
Contamination (A/C)	5	A: CO, S or other, C: S-compounds, Nox, NH ₃ , organics			
ECSA loss (A/C)	1	particle growth/Pt dissolution or carbon corrosion (hot H ₃ PO ₄)			
increase electronic resistance (A/C)	4	electronic vs. proton resistance			
membrane - increase of proton resistance	3				
membrane - increase in H2 X-over	3				
flooding / loss of hydrophobicity (A/C)	6	(for HT-PEM)			
influence of compression	2	ECSA, distribution of H_3PO_4 , flow field design			

Thank you for your attention !

www.next-energy.de

www.project-eureca.com http://demmea.iceht.forth.gr

EURECA – Efficient Use of Energy Converting Applications The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2077-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° [303024], [245156].