## Advanced bipolar plates without flow channels, for PEM electrolysers operating at high pressure

#### Hydrogen Session – Bipolar plates for PEM fuel cells and electrolyzers



www.ise.fraunhofer.de

<u>Emile Tabu Ojong</u><sup>1</sup>, Eric Mayousse<sup>2</sup>, Tom Smolinka<sup>1</sup>, Nicolas Guillet<sup>2</sup>

 <sup>1</sup>Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg - Germany
 <sup>2</sup>CEA – LITEN, Laboratoire d'Innovation pour les Technologies des Energies nouvelles et les Nanomatériaux, Grenoble - France

TECHNOPORT RERC 2012 Trondheim, April 16 - 18, 2012



#### Merits and challenges of high pressure PEM water electrolysis

#### Merits

- Splitting of water into its constituent elements by use of electricity
- Storage of excess power from renewable energy sources
- Highly efficient with zero carbon footprint
- Reduced system cost for operation at high pressure



#### $\rightarrow$ Bipolar plate is the critical component for costs and life span improvements



### The multifunctional bipolar plate

| Functions                                          | Required properties                                                      |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------|--|--|
| Conduction of electrical current from cell to cell | High electrical conductivity                                             |  |  |
| Facilitation of heat management                    | Good thermal conductivity                                                |  |  |
| Flow distribution of reactant water and            | <ul> <li>Highly impermeable to gases</li> </ul>                          |  |  |
| product gases                                      | <ul> <li>Corrosion resistant on anode side</li> </ul>                    |  |  |
|                                                    | <ul> <li>Hydrogen embrittlement resistant on<br/>cathode side</li> </ul> |  |  |
|                                                    | <ul> <li>High electrochemical stability</li> </ul>                       |  |  |
| Constitutes most part of the mass and              | High mechanical stability                                                |  |  |
| volume of electrolyser                             | <ul> <li>Low material and production costs</li> </ul>                    |  |  |
|                                                    | Availability                                                             |  |  |



### **Bipolar plates development at Fraunhofer ISE**

- Conventional design
  - Machined Ti plates, 50 cm<sup>2</sup> active area
  - Expensive
- Gold coated design
  - Injection molded PPS
  - 9 cm<sup>2</sup> active area
  - Highly durable but expensive
- Low cost design
  - Injection molded plate with inner Ti pin
  - 78 cm<sup>2</sup>active area
  - Low thermal management and low power density
- Second generation low cost design
  - Thin unmachined Ti plate
  - Better thermal management
  - Problems with gas tightness







#### Major bipolar plate challenges

- Strong corrosive conditions on the anode side due to:
  - Anodic polarisation
  - Operation at elevated temperatures
  - Presence of oxygen
- Hydrogen embrittlement of metals on the cathode side
- High material costs and manufacturing techniques

#### **R&D focus**

- Screening of candidate materials based on corrosion and hydrogen embrittlement resistance
- Comprehensive cost analysis model on material and production techniques
- Novel design concepts













#### Benchmark materials and Cost break down model

#### Cost model and assumptions

- Material costs based on offers from suppliers that guarantee real market prices
- Manufacturing costs from in-house experience and information from subcontractors
- Cost model accounts for all steps in the production process
- Waste materials such as shavings are recycled and sold for a third of the original price
- Two stack design concepts (conventional and advanced) are considered

| Components                | Specifications                                                |  |  |
|---------------------------|---------------------------------------------------------------|--|--|
| Bipolar plates            | Titanium                                                      |  |  |
| Cell frame                | PPS GF40                                                      |  |  |
| Anode catalyst            | IrO <sub>2</sub>                                              |  |  |
| Anode loading             | 2 mg/cm <sup>2</sup>                                          |  |  |
| Cathode catalyst          | 40 wt. % Pt on carbon                                         |  |  |
| Cathode loading           | 1 mg/cm²                                                      |  |  |
| Membrane                  | Nafion 117                                                    |  |  |
| Anode current collector   | Sintered Ti,<br>expanded Ti mesh,<br>Ti felt                  |  |  |
| Cathode current collector | Carbon paper,<br>sintered Ti,<br>expanded Ti mesh,<br>Ti felt |  |  |



### **Conventional Vs. Advanced design**





### **BiP Manufacturing costs break down**

- Machining of Titanium bipolar plates is quite expensive
- Only slight cost reduction with increasing production rate
- Cost target of 2500 € / Nm<sup>3</sup>h-1 cannot be met using machined bipolar plates





#### **Corrosion screening of candidate bipolar plate materials**

- Corrosion tests performed in a three electrodes electrochemical cell
- Hg/Hg<sub>2</sub>SO<sub>4</sub> / K<sub>2</sub>SO<sub>4</sub> (0,690 V vs. R.H.E) reference electrode
- 0,5M H<sub>2</sub>SO<sub>4</sub> electrolyte
- pH 3,3
- Candidate materials tested
  - Grades of stainless steel
  - Tantalum coated stainless steel
  - Hastealloys
  - Various grades of Titanium







#### **Stainless steel grades**

|         | Fe (Wt%)                                       | Ni (Wt%) | Cr (Wt%) | Mo (Wt%) | Mn (Wt%) |  |  |
|---------|------------------------------------------------|----------|----------|----------|----------|--|--|
| SS 316L | 0,68                                           | 0,11     | 0,17     | 0,02     | 0,02     |  |  |
| SS 904L | 0,49                                           | 0,26     | 0,21     | 0,02     | 0,01     |  |  |
| TCS     | Low cost surface modification on 316L and 904L |          |          |          |          |  |  |



E (V vs. RHE)

E (V vs. RHE)

|                                             | 316<br>L | 316LTS<br>C | 904<br>L | 904LTS<br>C | Ti Gr2 | DOE Objective |
|---------------------------------------------|----------|-------------|----------|-------------|--------|---------------|
| Corrosion current at 2V vs.<br>RHE (µA/cm²) | 96,1     | 88,2        | 42,4     | 31,8        | 10     | < 16          |





#### **Tantalum coated stainless steel**

- Tantalum coated by electrodeposition in ionic liquids
- A second sample of Ta coated SS316L was annealed at 500°C under air before testing



|                                                       | 316<br>L | 316L+Ta | 316L+Ta<br>Annealed | Ti Gr2 | DOE Objective |
|-------------------------------------------------------|----------|---------|---------------------|--------|---------------|
| Corrosion current at 2V vs. RHE (µA/cm <sup>2</sup> ) | 63,4     | 41,8    | 99,6                | 10     | < 16          |



#### **Hastealloys**

|               | Fe (Wt%) | Ni (Wt%) | Cr (Wt%) | Mo (Wt%) | Mn (Wt%) |
|---------------|----------|----------|----------|----------|----------|
| Cronifer 1925 | 0,47     | 0,25     | 0,19     | 0,06     | 0,01     |
| Nicrofer 3127 | 0,32     | 0,31     | 0,27     | 0,06     | 0,02     |
| Nicrofer 5923 | 0,01     | 0,59     | 0,23     | 0,16     | -        |



E (V vs. RHE)

E (V vs. RHE)

|                                                       | 1925 | 3127 | 5923 | Ti Gr2 | DOE Objective |
|-------------------------------------------------------|------|------|------|--------|---------------|
| Corrosion current at 2V vs. RHE (µA/cm <sup>2</sup> ) | 63,4 | 41,8 | 99,6 | 10     | < 16          |



### **Titanium grades**

|          | C<br>(Wt%) | Fe<br>(Wt%) | H<br>(Wt%) | N<br>(Wt%) | O<br>(Wt%) | Pd<br>(Wt%) | Mo(Wt<br>%) | Ni(Wt%<br>) |
|----------|------------|-------------|------------|------------|------------|-------------|-------------|-------------|
| Grade 1  | 0,1        | 0,5         | 0,015      | 0,05       | 0,4        | -           | -           | -           |
| Grade 2  | 0,1        | 0,3         | 0,015      | 0,05       | 0,35       | -           | -           | -           |
| Grade 7  | 0,1        | 0,3         | 0,015      | 0,05       | 0,35       | 0,2         | -           | -           |
| Grade 12 | 0,1        | 0,3         | 0,015      | 0,05       | 0,35       | -           | 0,3         | 0,8         |



E (V vs. RHE)

|                                          | Grade 1 | Grade 2 | Grade 7 | Grade 12 | DOE Objective |
|------------------------------------------|---------|---------|---------|----------|---------------|
| Corrosion current at 2V vs. RHE (µA/cm²) | 15,4    | 10      | 14,1    | 6,3      | < 16          |



#### SEM and EDAX analysis for Ti Gr.2

As received



Polished







### Trade-off

- Basically, all titanium grades meet the corrosion resistance target !
- Material cost become major trade-off criterion
- Availability also taken into consideration
- Concerns about the possibility of nickel leaching into electrolyser water and to the environment
- Likelihood of leaching not studied
- Titanium grade 2 is chosen as the preferred material for used as bipolar plate, due to corrosion resistance and relatively low cost
- Bipolar plates without machined channels

| Approximate material cost ratio* |               |            |  |  |  |  |
|----------------------------------|---------------|------------|--|--|--|--|
|                                  | ASTM<br>Grade | Cost ratio |  |  |  |  |
| Unalloyed Ti                     | 2             | 1,00       |  |  |  |  |
| Ti-0,3Mo-0,8Ni                   | 12            | 1,12       |  |  |  |  |
| Ti-0,15Pd                        | 7             | 1,90       |  |  |  |  |
| Ti-0,06Pd                        | 16            | 1,38       |  |  |  |  |
| Ti-0,1Ru                         | 26            | 1,15       |  |  |  |  |
| Ti-3AI-2,5V                      | 9             | 1,25       |  |  |  |  |
| Ti-3Al-2,5V-0,05Pd               | 18            | 1,60       |  |  |  |  |
| Ti-3Al-2,5V-0,1Ru                | 28            | 1,38       |  |  |  |  |
| Ti-6Al-4V                        | 5             | 1,22       |  |  |  |  |
| Ti-6AI-4V-0,05Pd                 | 24            | 1,57       |  |  |  |  |
| Ti-6Al-4V-0,1Ru                  | 29            | 1,34       |  |  |  |  |
| *Source: R.W \$                  | Schutz et al. | 1996       |  |  |  |  |



### Performance of conventional Vs. advanced design

- Laboratory test cells, both 25 cm<sup>2</sup> active area
- Sintered Ti Gr.2 discs as current collectors
- Fumatech EF-40 (230µm) MEA
- Increased electronic conduction
- Higher contact surface area





### Outlook

*In-situ* tests with short stacks, 5 cells and then 10 cells

- 150 cm<sup>2</sup> cell active area
- 1,8 V nominal cell voltage
- 1 A/cm<sup>2</sup> current density
- Up to 30 bar operating pressure
- Characterisation after up to 1000 hours of operation
- Concerns about hydrogen embrittlement of titanium
- Questions about titanium self ignition
- Further investigation on other coating configurations and surface modifications



# Thank you for your attention !!



M.Sc. Emile Tabu Ojong Fraunhofer – Institute for Solar Energy sytsems Heidenhofstr. 2; 79110 – Freiburg; Germany Ph: +49 761 4588 5335 emile.tabu.ojong@ise.fraunhofer.de www.ise.fraunhofer.de

