Ex-situ testing of Bipolar Plates with and without CrN coatings for PEM fuel cells Sigrid Lædre (Sør-Trøndelag University College) Anders Ødegård (SINTEF materials and chemistry) Ole Edvard Kongstein (SINTEF materials and chemistry) Frode Seland (NTNU) Håvard Karoliussen (Sør-Trøndelag University College) Sonja Auvinen (VTT Technical research center of Finland) Jarmo Siivinen (VTT Technical research center of Finland) ### Outline - * Introduction - * Background and motivation - Experimental setups - * Results - * pH variations - * F and Cl additions - * CrN coatings - * Conclusions / Further work ## Introduction Stainless steel #### * SS 316L - * Attractive as bipolar plate material. - * High interfacial contact resistance with the carbon backing. - * Due to the chromium oxide formed on the surface. - * Coating of the steel. ## Introduction Background - In-situ characterization of bipolar plates is often time consuming and complicated. - * Develop reliable and easy ex-situ measurements for bipolar plates. - Corrosion measurements. - * Interfacial contact resistance (ICR) measurements. - * Use these methods to investigate properties of new coatings for SS 316 L bipolar plates #### Introduction ### Ex-situ measurements #### * Objective: - * Faster and easier than similar in-situ measurements. - * Provides an opportunity to study the bipolar plate while its being polarized. - * Wish to investigate the possibility of accelerating the processes taking place in an operating fuel cell. #### * Experiments performed ex-situ: - * Corrosion measurements - * Potentiostatic and potentiodynamic polarizations of the bipolar plates. - Contact resistance measurements - * In order to study the change of the stainless steel surface before and after polarization. #### Experimental setups ### Corrosion measurements - * Electrolyte: H₂SO₄ solution - * Temperature: 75°C - * Reference electrode: Hg/Hg₂SO₄ #### Experimental setups ### Interfacial Contact Resistance ## pH variation: polarization - * pH measured in water from fuel cell outlets: around 3,5. - * From the figure: - High pH results in high corrosion currents. - * Close to no corrosion current when the pH is 3,72. - * 1 M electrolyte - Could alter the oxide layer on stainless steel in a way that might never happened in an operating fuel cell. ## pH variation: ICR - Low pH= low contact resistance - * Probably due to a reduction of oxide layer thickness. - Possible exposure of steel surface. - * Corrosion of the steel. ## F⁻ and Cl⁻ additions: polarization - * 1 mM (pH= 2,87) sulfuric acid solution with either: - 2 ppm fluoride - * 10 ppm chloride - * or 100 ppm chloride - * The corrosion current does not seem to be increased by either 2 ppm fluoride or 10 ppm chloride. #### F⁻ and Cl⁻ additions: ICR - * Little or no difference with the additions of either fluoride and chloride. - * Confirms the corrosion test results. ## CrN coatings - Coated plates were supplied by VTT. - * CrN - * Hexavalent Cr. - * Trivalent Cr. - * Applied by Electrodeposition. - * Plasma nitrided to obtain CrN. ## CrN coatings Polarization ## CrN coatings ICR measurements #### Conclusions and further work - * Both the corrosion test setup and the ICR test setup makes it possible to do ex-situ testing easier and faster than when the PEM fuel cell is in operation. - * Low pH might not be the best way to accelerate the corrosion process of the stainless steel. - The CrN coated bipolar plates showed very promising ICR. - * Further work will focus on development and testing of self produced coatings. ## Acknowledgements - * This work was financially supported by Sør-Trøndelag University College (HIST), Norwegian University of Science and Technology (NTNU), SINTEF and Nordic Innovation. - * Nordic innovation is greatly acknowledged for funding the NORCOAT project (09051). - * The Technical Research Centre of Finland. ## Thank you for your attention Norwegian University of Science and Technology