

On the corrosion and contact resistance characteristics of micro-stamped metallic bipolar plates

Muammer Koç ^{1,2} Ömer Necati Cora ^{2,3} Ender Dur ² Cabir Turan ² M Fatih Peker ²

 ¹ İstanbul Şehir University, İstanbul, TURKEY
² NSF I/UCR Center for Precision Forming (CPF), VA, USA
³ Karadeniz Tech University, Dept. of Mech. Engineering, Trabzon, TURKEY <u>mkoc@sehir.edu.tr</u>

Related Publications

- MF Peker, ON Cora, M Koç, (2011), 'Investigations on the Variation of Corrosion and Contact Resistance Characteristics of Metallic Bipolar Plates Manufactured under Longrun Conditions', *International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.* 2011.08.067
- C Turan, ON Cora, **M Koç**, (2011), 'Effect of Manufacturing Processes on Contact Resistance Characteristics of Metallic Bipolar Plates in PEM Fuel Cells', *International Journal of Hydrogen Energy, v36, n19, September 2011, pp. 12370-12380*
- E Dur, ON Cora, M Koç, (2011), 'Experimental Investigations on the Corrosion Resistance Characteristics of Coated Metallic Bipolar Plates for PEMFC', *International Journal of Hydrogen Energy, v26, pp. 7162-7173*
- E Dur, ON Cora, **M Koç**, (2011), "Effect of manufacturing conditions on the corrosion resistance behavior of metallic bipolar plates in proton exchange membrane fuel cells", *Journal of Power Sources, v.196 (2011), pp.1235–1241*
- ON Cora, S Mahabunpachai, M Koç, (2010), "Effect of Manufacturing Processes on Formability and Surface Topography of Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates", J. Power Sources, <u>v.195</u>, pp. 5269-5277.

Related Publications

- F Dundar, S Mahabunphachai, E Dur, **M. Koc**, (2009), "Corrosion Resistance Characteristics of Stamped and Hydroformed PEMFC Metallic Bipolar Plates", *Journal of Power Sources, v.195, pp.3546-3552.*
- **M. Koç**, S. Mahabunphachai, and F. Dundar, (2009), "PEMFC Metallic Bipolar Plates: Effect of Manufacturing Method on Corrosion Resistance", *ECS Transactions, v. 25, n.1, pp.1773-1782.*
- S. Mahabunpachai and M. Koç, (2008), "Fabrication of Micro-channel Arrays on Thin Metallic Sheet Using Internal Fluid Pressure: Investigations on Size Effects and Development of Design Guidelines", *J of Power Sources, v.175, n.1, pp.363–371 (Jan* 2008)
- **M. Koç** and S. Mahabunpachai, (2007), "Feasibility investigations on a novel micromanufacturing process for fabrication of fuel cell bipolar plates: internal pressure-assisted embossing of micro-channels with in-die mechanical bonding", *Journal of Power Sources*, *v.172, n.2, pp. 725–733 (Oct 2007)*

Outline

- INTRODUCTION:

- Background Information: Fuel Cells, PEMFCs
- Bipolar Plate (BPP) manufacturing

- CORROSION RESISTANCE OF BPP's

- Uncoated Case
- Coated Case
- Effect of Process Sequence
- Conclusions

- CONTACT RESISTANCE OF BPP's

- Uncoated Case
- Coated Case
- Effect of Process Sequence
- Conclusions

- Acknowledgments

Challenges in FC Technology

- 4-10 times more expensive than internal combustion engines (\$200 to \$300 per kW, as compared to \$30-to-\$50 per kW)

- Ream; 2007 - Scherer et al.; 2007

- BPPs constitutes 60-80% of the stack weight, 50% of the stack volume and 25-45% of the stack cost. Tsuchiya & Kobayashi, 2004
 - Li & Sabir, 2005
 - Antunes et al., 2010
- Need for robust, cost-effective, mass production technology for manufacturing of bi-polar plates.

Issues and Requirements for BPPs

DOE Goals

<u>Characteristic</u>	<u>Units</u>	<u>2010 Goal</u>	<u>2015 Goal</u>
Cost	\$ / kW	5	3
Weight	kg / kW	<0.4	<0.4
H ₂ permeation flux	$cm^{3} sec^{-1} cm^{-2} @ 80^{\circ}C,$ 3 atm (equivalent to <0.1 mA / cm2)	<2 x 10 ⁻⁶	<2 x 10 ⁻⁶
Corrosion	μ A / cm ²	<1	<1
Resistivity	Ohm-cm	0.01	0.01
Flexural Strength	MPa	>25	>25
Flexibility	% deflection at mid- span	3 to 5	3 to 5

<u>Issues</u>

- Cost
- Contact resistance
- Corrosion resistance
- Wetting properties
- Flow field design
- Mechanical properties
- Reactant permeation
- Bulk electrical conductivity
- Manufacturing

Brett and Brandon, Journal of Fuel Cell Science and Technology. 4 (2007) 29-44.

www.eere.energy.gov

Materials for Bipolar Plates

Material	Advantages	Disadvantages
Graphite	Low contact resistance High corrosion resistance	Expensive to machine Brittle Thick
Carbon- carbon composites	Excellent corrosion resistance Low bulk resistivity Low contact resistance	Poor mechanical properties (brittleness) Porosity High weight and volume High processing cost
Carbon- polymer composites	Low cost Good corrosion resistance Low weight No machining process Commercial availability of the raw materials	Low mechanical strength Low electrical conductivity
Metals	Good electrical conductivity High thermal conductivity Low cost Excellent mechanical properties Ease of fabrication Lightweigth and less bulky	Severe corrosion Contact resistance

Yuan et al., J. New. Mat. Electrochem. Systems. 8 (2005) 257-267.

Research Motivation and Objectives

Motivation

- PEMFC is a promising energy generation technology
- BPP is a critical component in PEMFCs
- Corrosion and Contact Resistance are major problems with metallic BPP for PEMFCs
- □ There are studies on corrosion and contact resistance of metallic BPPs
- However, none addresses the effect of manufacturing process

Objectives are understanding the followings on Corrosion and Contact Resistance of metallic BPPs

- Effect of material, manufacturing process and process parameters
- Effect of coating and its interactions with manufacturing conditions
- Effect of process sequence

Research Plan

Existing Studies on Corrosion Resistance

Material	Sample Form	Reference
SS304	Unformed coupon	Joseph et al., 2005
SS304	Unformed sheet	Garcia et al., 2006
SS316L and amorphous Zr ₇₅ Ti ₂₅	Unformed sheet and bulk	Lafront et al., 2007
SS316L, SS310S, SS904L, SS304,	Unformed	Pazio and Silva, 2007
SS304	Unformed plate	Ren and Zeng, 2007
SS316L	Unformed plate	Wang and Northwood, 2006

studies on the effects of manufacturing ???

Experiments- Manufacturing conditions

• BPP Materials: SS 304, SS430, SS316L, Ti, Ni (51µm-thick-uncoated)

• Coating Materials and Thicknesses: TiN, CrN, ZrN / 0.1, 0.5, 1 µm (51µm-thick-coated-SS316L)

Experiments- Corrosion Test Setup

Coated Bipolar Plates

COATING

Coating Method: PVD (Physical Vapor Deposition)

Coating Materials: TiN, CrN, ZrN

Coating Thickness: 0.1, 0.5, 1 μm

Effect of Coating Type & Thickness (Coated BLANK)

- F. Dundar, E Dur, S. Mahabunphachai, M. Koç, (2010), J Power Sources, v195, pp.3546-3552.
- E Dur, O N. Cora, M. Koc, (2011), J Power Sources, v196, pp.1235–1241.

KARADENİZ TEKNİK ÜNİVERSİTESİ 1 micron > 0.5 micron > 0.1 micron

ZrN > CrN > TiN

Effect of Manufacturing (Coated <u>BPPs</u>)

- F. Dundar, E Dur, S. Mahabunphachai, M. Koç, (2010), J Power Sources, v195, pp. 3546-3552.
- E Dur, O N. Cora, M. Koc, (2011), J Power Sources, v196, pp.1235–1241.

KARADENİZ TEKNİK ÜNİVERSİTESİ

Blank > Hydroformed > Stamped (ZrN)

Process Sequence (Formed-Coated vs. Coated-Formed)

Formed-Coated > Coated-Formed insignificant for Hydroformed Hydroformed > Stamped for ZrN (significant)

ZrN > CrN > TiN (significant)

SEM Images for Coated BPPs TiN 1µm-Hydroformed-Coated

KARADENİZ TEKNİK ÜNİVERSİTESİ

Conclusions

Effects of manufacturing processes and substrate materials (Uncoated BPPs):

- Blank samples showed the best corrosion resistance
- Manufacturing process and parameters had an adverse impact
- SS316L, Ti, SS304 > Ni, SS430 (significant)
- Hydroformed > Stamped (slightly)
- Uncoated samples do not meet the DOE target

Conclusions

Effects of coatings, manufacturing processes and process sequence (Coated BPPs):

- ZrN > CrN > Uncoated > TiN (significant)
- 1 micron > 0.5 micron > 0.1 micron thickness (significant)
- Blank > Hydroformed > Stamped
- Formed-Coated > Coated-Formed (*insignificant for hydroforming*)
- BPPs with 250 micron > BPPs with 750 micron (insignificant)

ZrN and CrN coatings meet the DOE target

Contact Resistance (ICR) in BPP

PEMFC Stack

Effects of contact resistance

- Increase voltage drops
- Decrease efficiency
- Decrease power outputs
- Decrease power density

Avasarala et al., J. Power Sources. 188 (2009) 225-229.

Gas diffusion layer (GDL)

Methodology-Uncoated BPP

Corrosion Test

C. Turan, Ö. N. Cora, M. Koç, has been accepted with revision by International Journal of Hydrogen Energy in 2011.

BPP Channel Profiles

Stamped 750 µm Channel

Hydroformed 750 µm Channel

Stamped 250 µm Channel Hydroformed 250 µm Channel

Contact Type Profiler

Stylus Profiler (Ambios XP1) Vertical Resolution 6.2nm at $400 \,\mu$ m

KARADENİZ TEKNİK ÜNİVERSİTESİ

Non-Contact Measurement

Laser Displacement Sensor (Keyence G37) with Motorized stage (National Aperture MM-4M-EX-140) Repeatability 0.01 μ m

Contact Resistance Tests

Davies et al. Journal of Applied Electrochemistry. 30 (2000) 101-105 Wang et al. J. Power Sources. 115 (2003) 243-251.

KARADENİZ TEKNİK ÜNİVERSİTESİ
$$\begin{split} R_{T1} &= 2R_{CC} + 2R_{CC/GDL} + 2R_{GDL} + 2R_{GDL/BPP} + R_{BPP} \\ R_{T2} &= 2R_{CC} + 2R_{CC/GDL} + R_{GDL} \\ R_{BPP/GDL} &= 0.5 (R_{T1} - R_{T2} - R_{GDL} - R_{BPP}) \end{split}$$

ICR of Coated BPPs

Coating Method:Physical vapor deposition (PVD)Coating Materials:CrN, TiN, ZrNCoating Thicknesses:0.1, 0.5 and 1 um

ICR with Various Compaction Pressure

- ICR differences between various coating are distinct
- Exponential decrease with Compression pressure
- ICR decreases after corrosion test

ICR of Coated Blank Sheets

Effect of coating material and thickness

- Coating material is very effective on ICR
- TiN<ZrN<Uncoated<CrN</p>
- Only TiN meets DOE target.
- Increasing CrN thickness increases ICR
- Increasing TiN, ZrN thicknesses decrease ICR
- □ No significant difference between 0.5 and 1 µm ZrN (ANOVA)

ICR of CrN Coated BPPs

CrN coating increases ICR

- Thicker coating layer gives higher ICR
- Difference between hydroforming and stamping is insignificant
- □ ICR values of CrN coated BPPs are too high for PEMFC.

ICR of ZrN Coated BPPs

ZrN coating decreases ICR

- 0.1 µm coating thickness gives similar ICR to uncoated BPPs
- ICR of 0.5 µm ~ ICR of 1µm
- No significant ICR difference between hydroforming and stamping (ANOVA).
- ICR values of ZrN coated BPPs do not meet DOE target

ICR of TiN Coated BPPs

TiN coating significantly decreases ICR

- ICR of 0.5 μm and 1μm similar
- Difference between hydroforming and stamping is insignificant.
- □ ICR values of 0.5 and 1 µm TiN coated BPPs are around DOE target

Effect of Process Sequence on ICR

Process Sequence	Advantages	Disadvantages
Forming Then Coating	Intact coating layer	Discrete production High cost Slow manufacturing rate
Coating Then Forming	Continuous production Low cost High manufacturing rate	Possible defect on coating layer

Picture:www.sandvik.com

KARADENİZ TEKNİK ÜNİVERSİTESİ

Effect of Process Sequence on ICR

Ο No statistically significant difference in 0.1 μm due to variations

- Coated+Formed is better in 0.5 and 1 μm
- ICR values of ZrN coated BPPs are higher than DOE target

Effect of Process Sequence on ICR

Similar or better ICR performance of "Coated Then Formed" compared to "Formed Then Coated" BPPs

SEM images of TiN coated BPPs

Formed+Coated, 1 µm

Coated+Formed, 1 μm

Coated+formed, 0.5 µm

Coated+Formed, 0.1 µm

 Coating pits on formed then coated BPPs
Cracks parallel to channels on coated then formed BPPs

Effect of Corrosion Test on ICR

ICR increased after corrosion test

Thicker coating is more stable against corrosive conditions

Conclusions

Uncoated Samples

- The channel size and hydroforming pressure by modifying contact geometry was found to be significant factors on ICR.
- Stamping and hydroforming did not yield any certain pattern in most cases.
- Do not meet DOE target level.

Coated Samples

- Effect of coating and coating thickness were the most significant effecting parameters.
- Effect of manufacturing method and die geometry were insignificant.
- Stamping with high punch speeds seem more appropriate for mass manufacturing of metallic BPP.
- Coating before forming looks promising and is worthy for further investigation.

Acknowledgments

- NSF I/UCRC Program (Center for Precision Forming-CPF and its industrial members under NSF IIP Grant #: 0638588)
- EU 7th FP People Program (Marie Curie Actions, REA Grant Agreement: 268156)
- Ph.D graduates
 - Dr. Omer N Cora, Karadeniz Tech Univ, Turkey
 - Dr. Sasawat Mahabunphachai, MTEC, Thailand
 - Dr. Ender Dur, IGDAS, Turkey
 - Dr. Cabir Turan, IGDAS, Turkey
 - Dr. M. Fatih Peker, VCU, USA

Related Publications

- MF Peker, ON Cora, M Koç, (2011), 'Investigations on the Variation of Corrosion and Contact Resistance Characteristics of Metallic Bipolar Plates Manufactured under Longrun Conditions', *International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.* 2011.08.067
- C Turan, ON Cora, **M Koç**, (2011), 'Effect of Manufacturing Processes on Contact Resistance Characteristics of Metallic Bipolar Plates in PEM Fuel Cells', *International Journal of Hydrogen Energy, v36, n19, September 2011, Pages 12370-12380*
- E Dur, ON Cora, M Koç, (2011), 'Experimental Investigations on the Corrosion Resistance Characteristics of Coated Metallic Bipolar Plates for PEMFC', *International Journal of Hydrogen Energy, v26, pp. 7162-7173*
- E Dur, ON Cora, **M Koç**, (2011), "Effect of manufacturing conditions on the corrosion resistance behavior of metallic bipolar plates in proton exchange membrane fuel cells", *Journal of Power Sources, v.196 (2011), pp.1235–1241*
- ON Cora, S Mahabunpachai, M Koç, (2010), "Effect of Manufacturing Processes on Formability and Surface Topography of Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates", J. Power Sources, <u>v.195</u>, pp. 5269-5277.

Related Publications

- F Dundar, S Mahabunphachai, E Dur, **M. Koc**, (2009), "Corrosion Resistance Characteristics of Stamped and Hydroformed PEMFC Metallic Bipolar Plates", *Journal of Power Sources, v.195, pp.3546-3552.*
- **M. Koç**, S. Mahabunphachai, and F. Dundar, (2009), "PEMFC Metallic Bipolar Plates: Effect of Manufacturing Method on Corrosion Resistance", *ECS Transactions, v. 25, n.1, pp.1773-1782.*
- S. Mahabunpachai and M. Koç, (2008), "Fabrication of Micro-channel Arrays on Thin Metallic Sheet Using Internal Fluid Pressure: Investigations on Size Effects and Development of Design Guidelines", *J of Power Sources, v.175, n.1, pp.363–371 (Jan* 2008)
- **M. Koç** and S. Mahabunpachai, (2007), "Feasibility investigations on a novel micromanufacturing process for fabrication of fuel cell bipolar plates: internal pressure-assisted embossing of micro-channels with in-die mechanical bonding", *Journal of Power Sources*, *v.172, n.2, pp. 725–733 (Oct 2007)*

