

Business from technology

Screening of plasma nitrided CrN coatings for PEMFC bipolar plate

Technoport 2012, Trondheim Apr 16th – 18th 2012 Sonja Auvinen VTT Technical Research Centre of Finland

2

Outline

VTT Technical Research Centre of Finland

- Globally networked multi-technological contract research organization
- Provides high-end technology solutions and innovation services
- Turnover: 280 M€ (budget for 2010)
- Personnel: app. 3200, 78% with higher academic degree
- Fuel cell team
 - Focus mainly on PEMFC, SOFC and enzyme catalyzed and printed fuel cell technologies
 - Mainly system level and materials research
 - Personnel: 30

Scope of the study

- Base material stainless steel for PEMFC bipolar plates
- Protective coatings necessary
- Nitride coatings seem feasible
 - CrN, TiN the most promising
- In this study:
 - A coating for SS316L by a hard Cr layer which is subsequently plasma nitrided \rightarrow CrN protective layer
 - Study includes 3 different manufacturing methods for Cr tested in a multisinglecell
 - Contact resistance before and after test
 - Corrosion product content of MEA and GDL
 - Water contact angle of the coating surface

Different methods to manufacture CrN

- PVD Cr
 - Well known method to produce thin hard layers
 - Can suffer from microcracks or other defects
- Electroplated hexavalent Cr
 - Industrial process, mass production available
 - Hazardous to health
- Electroplated trivalent Cr
 - In-house method, no industrial process available
 - A few candidates based on chlorides or sulfates
 - More complicated than hexavalent process
- Plasma nitridation
 - Nitrogen in ionized state
 - Temperature can be decreased (vs. thermal nitridation), range 200-600 °C

Stainless steel sample tested in the fuel cell

6

Multisinglecell

- Multisinglecell resembles a stack with some differences
 - Cells are electrically insulated, connections in parallel or in series
 - Cell outlets are separated \rightarrow collecting exhaust water possible
 - Gas splitting can be done internally or externally
 - Thermostating liquid flowing between cells \rightarrow same temperature

Test station capacity multiplied Good screening tool

Test procedure

- An 8-cell setup of the multisinglecell was used
- 6 sample cells, 2 cells for reference
- Samples on the cathode
- 650 h test duration
- High temperature (80 °C)
- Fully humidified gases
- High stoichiometries
- Low current density

Samples tested in the multisinglecell

Cr layer type	Thicknesses
PVD	50 nm
	500 nm
	1 µm
Hexavalent	2 µm
	5 µm
	10 µm
Trivalent	10 µm

Corrosion product analysis

PEMFC has acidic conditions

 \rightarrow dissolution of corrosion products from the steel if protective coating not good enough

- After the test MEAs and GDLs were dissolved in an acid solution which was analysed for iron and chromium
- Iron is generally considered harmful for MEA
- All cations can cause decrease in MEA conductivity

- Iron was found from some sample cells in significant amounts
- Chromium releases mostly very low

Iron release analysis

Sample	Minimum (µg)	Maximum (µg)
Reference	0.5	2
PVD 50 nm	0.5	27.4
PVD 500 nm	5.1	6.1
PVD 1 µm	4.1	10.1
Hex 2 µm	17.7	137.3
Hex 5 µm	2.1	5.3
Hex 10 µm	1.9	7.7
Tri 10 µm	0.6	4.9

- Most samples have good results
- Possibly the thinnest samples too thin
 - 20 μg of Cr release from the highest iron emitting 2 μm hex-Cr!
- Several hundreds of µg / 10 cm² adsorbed iron in MEA from severely corroded samples (previous study)

10

Interfacial contact resistance

- Trivalent CrN values varied between 10 (cathode sample) – 65 (anode sample) mΩ cm²
 - Variance in the quality
 - Lower ICR possible with development of the process ?
- PVD manufactured samples values in between Hex-CrN and Tri-CrN

11

Water contact angle

 Unclarity of the preference of hydrophobic or hydrophilic bipolar plate surface

Which is more beneficial?

Hypothesis: The stability of the surface characteristics is important!

Water contact angle

 The water contact angle was measured before and after fuel cell test

Sample	CA before	CA after
PVD CrN 50 and 500 nm	100°	Non-stable droplet - 20°
PVD CrN 1 µm	100°	15°-40°
Hex-CrN 2 µm	70°	10°-35°
Hex-CrN 5 µm	70°	25°-50°
Hex-CrN 10 µm	65°	40°-55°
Trivalent CrN	55°	45° (anode samples) 30° (cathode samples)

- The most stable contact angle values were obtained from samples:
 - Trivalent CrN sample
 - Hex-Cr 10 μm

13

Summary

- In this study three different methods to produce CrN
 - Plasma nitridation was applied to
 - PVD Cr
 - Conventional electrodeposited hexavalent Cr
 - New electrodeposition process for trivalent Cr
- The iron release results were good for all but the thinnest CrN layers
- The ICR values varied
 - Best results from 5 μm and 10 μm hex-CrN
 - Trivalent CrN has potential for low ICR as well if process is developed
- Most stable contact angle with trivalent CrN and 10 µm hexavalent CrN

14

Acknowledgements

- Research funding:
 - Tekes (The Finnish Funding Agency for Technology and Innovation, contract 1919/31/2009, 40387/09)
 - NICe (Nordic Innovation Centre, contract 09051 NORCOAT)
- Partners in research:
 - Jarmo Siivinen, Amar Mahiout, Jari Ihonen from VTT
 - Ole Edvard Kongstein, Anders Ødegård from SINTEF
 - Hannu Revitzer, Aalto University
- Industrial partners involved in these studies are acknowledged:
 - Impact Coatings AB for PVD coatings
 - Kromatek Oy for electroplated hex-Cr
 - Bodycote Finland and Bodycote Sweden for plasma nitridations

Thank you for your attention!

