New concept and coating for PEMFC metallic bipolar plates ^{• Errogrunger}

Anders Ødegård, SINTEF Nordic Hydrogen Conference 2013, Oslo

Technology for a better society

Outline

- Bipolar plates for PEMFC- background
- Ex-situ and in-situ procedures
- Carbon-based coating
- Combined GDL/BPP concept
- Further work

Bipolar plates for PEM technology

- Requirements from automobile industry for fuel cell vehicles
- Main performance requirements:
 - Corrosion stability in acidic environment (<1 μ A / cm²)
 - High electric conductivity (surface contact) (<10 mOhm cm²)
 - Withstand manufacturing process (deforming up to 40%)
- Applied materials and solutions
 - Carbon based plates expensive manufacturing
 - Metal coated plates coating properties challenges
 - Nitrided metals
 - Carbon-based
 - Noble metals (ultra-low amounts, nanometres thickness)
 - Polymers

© Dana

Bipolar plate conditions

Requirement land area

Ex-situ BPP testing

- 1 mM H₂SO₄
- 80 °C
- De-aerated
- Hg/Hg₂SO₄/K₂SO_{4Sat} (0.64 V vs SHE)
 Mercury-mercurous reference electrode
- Linear sweeps
- Potentostatic experiments

In-situ BPP testing

- AST procedure
 - Conditioning of MEA 0.7V 0.4 V cycling
 - Cycling 0.4V OCV, 20 min each for 100 hours
 - ICR before and after
 - Water and MEA/GDL analysis

Two approaches

- Carbon-based coating with compression during hardening
 - Simple process, low cost materials

- Combine the GDL and BPP
 - direct contact GDL/BPP, non-conducting coating/paint/binder/glue

Carbon-based coating

- Cross sectional SEM images of coating in left compressed and right not compressed state
- Corrosion currents, linear sweep polarization 1 mM H₂SO₄ solution without oxygen at 80 °C.
- ICR values for coated and bare SS 316L plates, before and after linear sweep

Carbon-based coating II

- Compared with no and gold coating
- OK initial ICR
- High ICR after exposure to high voltages
 ->Oxidation of substrate

Technology for a better society

60

Initial ICR

ICR after 1 h at 0.69 V

Au

316 L

0

C-based

Combined GDL/BPP concept

- Applying a commercial corrosion protective lacquer/paints
- Variation in clamping pressure

Combined GDL/BPP in-situ test

- Comparison gold coated BPPs and "normal" GDL vs combined concept
- Little (or improved) change in ICR
- Reduction on Fe/Cr ions in MEA/GDL

Further work

- Apply coating/GDL-BPP concept on new stamped BPP
- Optimize carbon/epoxy mix ratios/materials
- Optimize wettability of coating/glue

Thanks to

- Angelica Orsi (University of St Andrews)
- Frode Seland (Norwegian University of Science and Technology)

Fraunhofer elringklinger

ISE

- Hans Husby (ex- NTNU master student)
- Håvard Husby (ex- NTNU master student
- Håvard Karoliussen (Sør-Trøndelag University College)
- Ivonne E. D. Hidalgo (University of St Andrews)
- Mathieu Grandcolas (SINTEF)
- Ole Edvard Kongstein (SINTEF)
- Rebecca Milliken (University of St Andrews)
- Sidsel Meli Hanetho (SINTEF)
- Sigrid Lædre (Sør-Trøndelag University College)
- Others?
- STAMPEM partners

Norwegian University of

Science and Technology

NFR

fuel cells & hydrogen for sustainability

Open positions in our department New Energy Solutions:

- Research Scientist within Electrochemistry
- Research Scientist/Master of Science within Materials science
- Deadline Nov 15th , see <u>www.sintef.no</u>

