STAMPEM (GA #303449)

Anders Ødegård SINTEF www.stampem.eu

PROJECT OVERVIEW

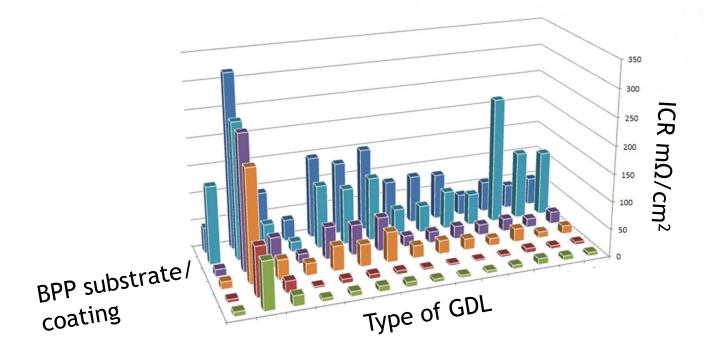
- STAble and low cost Manufactured bipolar plates for PEM Fuel Cells - STAMPEM
- Call topic: SP1-JTI-FCH.2011.1.7
- July 1st 2012 to June 30th 2015

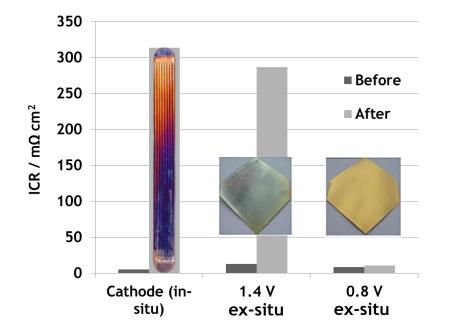
EF Innovation in Motion (Miles

- Total Budget € 5 223 807
 FCH JU contribution € 2 576 505
 Research Council of Norway ~€ 400 000 (SINTEF)
- Project objective:
 "Develop durable coating materials for PEMFC metal based bipolar plates"

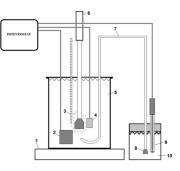
Fraunhofe

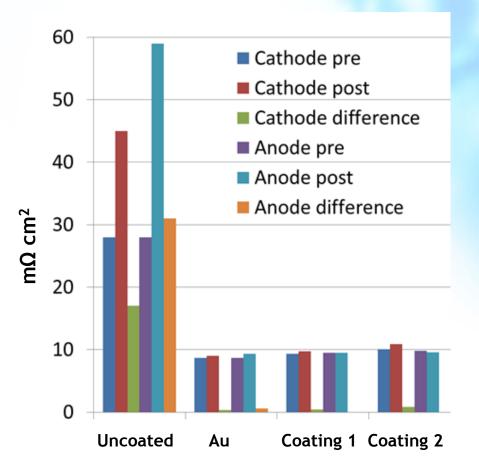
Month 29 of 36 (80 % project duration passed)

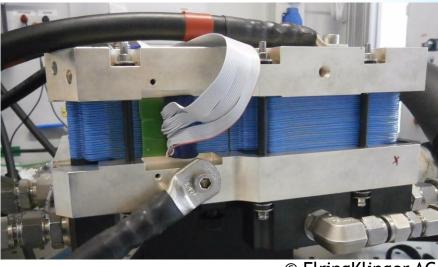

elringklinger)


Status before project	AIP target	Project Target	Current status/ achievements	Expected final achievement
OK with carbon composite or gold coated SS	ICR < 25 mΩ cm ² at relevant clamping pressures	< 25 mΩ cm ² after 10 000 hours extrapolated from AST	< 10 mΩ cm ² at BoL & and after 100 hours in-situ AST. Operated ~1000 hours in full size single cells	< 25 mΩ cm ² after 10 000 hours extrapolated from AST
OK with carbon composite or gold coated SS	Corrosion resistance < 10 μA/cm ²	< 10 µA/cm ² after 10 000 hours extrapolated from AST	< 1 μ A/cm ² in 1 mM H ₂ SO ₄ at 0.8 V _{SHE} and 80 °C at BoL. No visible corrosion after ASTs or tests of full size single cells	< 10 µA/cm ² after 10 000 hours extrapolated from AST

Status before project	AIP target, linked to MAIP targets	Project Target	Current status/achiev ements	Expected final achievement
OK with carbon composite or gold coated SS	Corrosion stability > 5,000 h	10 000 hours extrapolated from AST	~1000 hours in full size single cell,	10 000 hours extrapolated from AST
Above target	Costs (excluding taxes and levies) < 2.5 € /kW at 500,000 pieces annually	< 2.5 € /kW	>€6-12/kW	Probably still higher than 2.5 € /kW


- Effect of GDL properties on ICR
 - Optimize combination of BPP surface and type of GDL to get the best performance


- Comparing in-situ and ex-situ results
 - OCV-0.4 V cycling in-situ AST 100 hours
 - 0.8 V or 1.4 V for 1 hour ex-situ
 - => improved test protocols



- Status best coatings after small scale in-situ testing, AST 100 hours
 - 75°C and 100%rH humidity
 - Cycling OCV-0.4 V
 - Performance is similar to gold coated BPPs

- Next steps
 - Further coating and process optimization
 - Validation of performance in system operation
 - Post-mortem analysis of BPPs, MEAs and GDLs
 - Verification of ex-situ and in-situ AST protocols
 - Dissemination activities
 - Techno-economical assessment

© ElringKlinger AG

RISKS AND MITIGATION

- Cost target: < € 2.5/kW at 500,000 pieces annually
- Substrate costs of about € 2-4/kW leaves < € 0.5/kW for stamping/forming/joining and coating
- Best performing PVD-coatings, incl. manufacturing, have projected costs of around € 6-10/kW, depending on material composition, design of the BPP, surface finish and other end user requirements
- => Total € 8-14/kW so far in the STAMPEM case
- Multiple coating approaches, with low cost alternatives
 - E.g. metal nitrides, C-based, multilayer coatings by PVD
 - Conductive polymer by electrochemical deposition
 - Carbon composite by spraying, painting or dip-coating
- Conductive polymer and carbon composite low cost coatings are promising in ex-situ and small scale, but not verified in stack operation and still require development of large scale manufacturing

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

• The Research Council of Norway is funding SINTEF so that its total funding is the same as in FP7 projects

- Sharing experience and joint workshops with COBRA (other FCH JU PEM BPP project)
- Discussions with e.g. LANL (US) on metal BPPs in general and planned international workshop in May 2015

HORIZONTAL ACTIVITIES

- Master-, PhD students and Post docs involved in the project, both at R&D and industry partners
- Contributing to further development of test protocols by applying, investigating and improving existing test protocols for BPP (ex-situ and AST)
- Dissemination activities, next slide

DISSEMINATION ACTIVITIES

- Conferences, workshops organised/attended by project
 - 6 presentations at conferences/workshops
 - Open, international PEM BPP workshop to be organized at the end of the project (May 2015)
- Publications, patents arising out of project and its results
 - One article published, four more in writing
 - Project web site
 - Annual project flyers

EXPLOITATION PLAN/EXPECTED IMPACT

- New knowledge gained within metal based BPP
 - Improved ex-situ/AST test conditions/more relevant test parameters
 - Possibilities and limitations of ex-situ and small-scale in-situ testing of coating materials
 - Importance of the surface condition of the plate prior to coating
 - New pre-cleaning approaches, e.g. Fronius' plasma treatment
- Exploitation/further work
 - Optimization and cost reduction strategies of PVD-coatings and manufacturing
 - Investigation of automation (e.g. handling, cleaning, pre- and post inspection, etc.)
 - Further development and in-situ verification of polymer and composite coatings by UoB and SINTEF
 - Verification of PVD-coatings performance in full scale stacks (incl BOP)
 - Implementation of process improvements/materials in BPP business by EK and TCL