Strategies for Engineer-to-order Supply Chains: Lessons from Manufacturing and Construction

Dr Jon Gosling

Prof Mo Naim

- Ranked 4th in the UK in the last Research Assessment
- 2600 students each year, 130 faculty staff, total 300

Logistics Systems Dynamics Group

Purpose

...achieve world class research and education excellence in the advancement of management theory and practice, specifically in the field of logistical dynamics, via business systems engineering; in so doing adding value to its members and partners.

Group raison d'etre

- Brings together control theory, good operations management and industrial engineering practice, business process engineering and system dynamics simulation to form an integrated approach to logistics systems dynamics problem solving.
- Considers the implications of organisational, attitudinal, financial and technological factors when instigating business process change.
- Analyses, simplifies, integrates and optimises business processes via a generic modelling approach.

Knowledge Transfer Partnerships

Construction as a manufacturing process (?)

Personal Computer global supply chain

Supply Chain Focus on Total Customer Value

(Johansson et al., 1990)

Some definitions

- <u>Agility</u> means using market knowledge and a virtual corporation to exploit profitable opportunities in a volatile market place.
- <u>Leanness</u> means developing a value stream to eliminate waste, including time, and to ensure a level schedule
- A <u>supply chain</u> is a system whose constituent parts include material suppliers, production facilities, distribution services and customers linked together via a feedforward flow of materials, a feedback flow of information and flows of cash and resources
- The <u>decoupling point</u> separates the part of the supply chain oriented towards customer orders from the part of the supply chain based on planning

Supply Chain Strategies

(Hoekstra & Romme, 1992)

Impact of the Supply Chain Decoupling Point

(Naylor, Naim and Berry, 1999)

The Role of Flexibility

(Purvis, Gosling and Naim, 2014)

Linking operations to marketing

Metric	Agile	Lean
Lead Time	MQ	MQ
Service	OW	MQ
Costs	MQ	OW
Quality	MQ	MQ

(Naylor, Naim and Berry, 1999)

Uncertainty reduction in a PC supply chain

Customisation vs. standardisation

House building supply chain strategies

Construction as a manufacturing process?

Manufacturing as a construction process?

Why we think 'engineering-to-order' is a useful term?

CODP Basic Concept

Logic of Aggregation

Typically Means

- Standard Work
 Processes / Products
- Resources Easy to Forecast

Decoupling Point Logic of the Specific

Typically Means

- Variety in Work
 Processes / Products
- Flexible Resources May Be Required

A system with levels

Characterising Uncertainty and Risk from Project Team Perspective?

Typical Problems from a Manufacturer's Perspective?

Demand Uncertainty from Project Environment

Integration of trades

Lack of up to date information

Are there sufficient similarities across ETO sectors?

Do you recognize these challenges and problems?

Transfer of Best Practice

Adopting, adapting, and implementing improvement initiatives from MTS

Production Planning & Control, 2014

http://dx.doi.org/10.1080/09537287.2014.880816

Principles for the design and operation of engineer-to-order supply chains in the construction sector

Jonathan Gosling^{a*}, Denis R. Towill^a, Mohamed M. Naim^a and Andrew R. J. Dainty^b

^aLogistics Systems Dynamics Group, Logistics and Operations Management Section, Cardiff University, Aberconway Building, Cardiff, CF10 3EU, UK; ^bSchool of Civil and Building Engineering, Loughborough University, Leicestershire, LE11 3TU, UK

(Received 19 March 2012; accepted 14 December 2013)

How do these Principles apply to ETO?

Individual Cycle Times

Time Compression Principle

Information Transparency

Echelon Elimination Principle

Control System Principle

Synchronization Principle

Decisions, information and orders are co-ordinated and related to discrete points in time

Gosling, Naim and Towill (2012) 'Learning how to eat and elephant': implementing supply chain management principles'

Gosling, Naim and Towill (2012) 'Learning how to eat and elephant': implementing supply chain management principles'

Early supplier involvement DfM/Assembly JIT Deliveries Kanbans Consolidation Centres Visual Control Boards

Modular Platforms Component Rationalisation

Integrated Systems
KPI Systems
Partnerships
Standard Procedures

We concluded that initiatives need appropriate 'interpretation' & additional extras.

Closing thoughts

- ETO is an important model maintain ETO identify while translating best practice initiatives
- Manufacturing as a construction process (?)
 - Shipbuilding, aerospace
- Sustainability and Resilience
- Complex adaptive systems
- Risk and Reward

ETO References Used

- Gosling, Jonathan, and Mohamed M. Naim. "Engineer-to-order supply chain management: A literature review and research agenda." *International Journal of Production Economics* 122.2 (2009): 741-754.
- Gosling, J., L. Purvis, and M. M. Naim. "Supply chain flexibility as a determinant of supplier selection." *International Journal of Production Economics* 128.1 (2010): 11-21.
- Gosling, J., Naim, M. M., Fowler, N., & Fearne, A. (2007, July).
 MANUFACTURERS'PREPAREDNESS FOR AGILE CONSTRUCTION. In *Agile* Manufacturing, 2007. ICAM 2007. IET International Conference on (pp. 103-110). IET.
- Gosling, J., Naim, M., & Towill, D. (2013). A supply chain flexibility framework for engineer-to-order systems. *Production Planning & Control*, *24*(7), 552-566.
- Gosling, Jonathan, et al. "Principles for the design and operation of engineer-to-order supply chains in the construction sector." *Production Planning & Control* ahead-of-print (2014): 1-16.
- Gosling, J., Towill, D., & Naim, M. (2012). Learning how to eat an elephant: Implementing supply chain management principles. In *Proceedings of 28th Annual ARCOM Conference* (p. 28th).

Many thanks for listening

