Risk assessment as an integrated part of distribution system reinvestment project analysis

Oddbjørn Gjerde, SINTEF Energy Research Dag Eirik Nordgård, NTNU

Norway

Plan for the presentation

Background

- Process of reinvestment analysis
 - Process flow
 - Risk assessment
- Case:
 - Reinvestment analysis for MV/LV substations
- Concluding remarks

Background

- The emphasis on maintenance and reinvestment decisions is ever increasing in the electricity distribution business.
- Maintenance and reinvestment decisions are important parts of distribution system asset management, as means to control risk.
- The paper describes a framework where risk assessment is used to systematically evaluate projects regarding potential replacement or refurbishment of existing installations or sub-systems - referred to as reinvestment projects.
- The framework is well suited as a template for evaluating similar components e.g. MV/LV substations

Process of reinvestment analysis

SINTEF Energy Research

— —

Risk assessment flow chart

SINTEF Energy Research

Case study - Risk analysis framework for MV/LV substations

Identify component categories for MV/LV substations

- Building
- Cable terminations
- Breakers
 - Air insulated
 - SF6 insulated
 - Epoxy insulated
- MV/LV transformer
- Low-voltage system

Identify unwanted events

- 1. Oil leakage
- 2. Flashover at insulators
- 3. Oil fire/ explosion
- 4. Public complaints (acoustic noise)
- 5. Transformer breakdown
- 6. Transformer running hot

. . .

Risk mapping of unwanted events

Table 1Risk mapping for MV/ LV transformer.						
Safety risk						
Consequence ►	Incignificant	Minor	Modorato	Major	Catastrophic	
Likelihood V	msignineant		Moderate	iviajoi	Catastrophic	
Frequent						
Probable						
Occasional						
Remote						
Improbable				1, 3		

Environment risk						
Consequence ►	Insignificant	Minor	Moderate	Major	Catastrophic	
Likelihood V						
Frequent						
Probable						
Occasional						
Remote	1 (with coll.)		1 (without coll.)			
Improbable	3, 5 (with coll.)		3, 5 (without coll.)			

Reputational risk					
Consequence ►	Insignificant	Minor	Moderate	Major	Catastrophic
Likelihood V					
Frequent					
Probable					
Occasional					
Remote	1 (with coll.)	4	1 (without coll.)		
Improbable					

Economical risk					
Consequence ►	Insignificant	Minor	Moderate	Major	Catastrophic
Likelihood V					
Frequent					
Probable					
Occasional					
Remote		1, 2, 6			
Improbable			3, 5		

Pinpoint critical unwanted events

- Safety risk:
 Oil leakage, oil fire/ explosion
- Environmental risk:
 Oil leakage, oil fire/ explosion, breakdown (without oil collector)
- Reputation risk:Oil leakage
- Economic risk: Small (acceptable)

. . .

Formulate "check-points"

- Insulating medium?
 Oil / dry
- Transformer condition?
 Worse/average/better
- Oil collector underneath? No/yes
- Any other circumstances?

Checklist for MV/LV substation

Component/ sub system	Current state	Alternative 1	Alternative 2
A. Building		-	
A.1 Adequate protection against			
unauthorised access			
A.2 Safe escape route in case of unexpected			
event			
A.3 Substation easily accessible			
A.4 Tagging on walls			
A.5 Intrusion of water			
A.6 Any other circumstances	-	-	
B. Cable terminations			
B.1 Termination type	Oil filled	Oil filled	Dry
B.2 Partial discharges audible	No		
B.3 Any other circumstances	-		
C. Breakers			
C.1 Breaker type	Air	Air	SF6
C.2 Condition	Average	Average	Better
C.3 Enclosure	Closed	Closed	Closed
C.4 Any other circumstances	-	-	-
D. Low-voltage system			
D.1 Enclosure	Open	Protected	Protected
D.2 Single pole switches	Yes	Yes	No
D.3 Any other circumstances	-	-	-
E. Transformer			
E.1 Insulating medium	Oil	Oil	Oil
E.2 Condition	Average	Average	Better
E.3 Oil collector underneath?	Yes	Yes	Yes
E.4 Any other circumstances	-	-	-
Investment cost [kNOK]		100	800
Remaining lifetime [years]		< 10	> 30

Alternative 1: *Minimum solution*

Alternative 2: *New substation*

Concluding remarks

- A concept of risk assessment applied to replacement or refurbishment evaluation is described
- It represents a compact and understandable evaluation and documentation of the problem and possible solutions
- The approach is suitable for repetitive reinvestment analysis as exemplified for MV/LV substations

