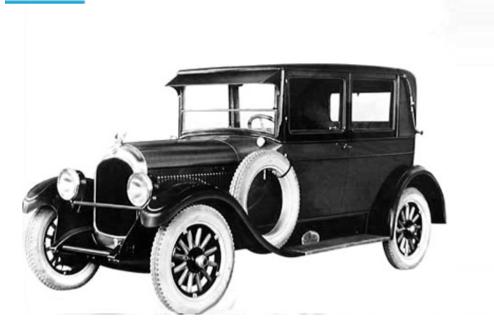


3D PRINTING IN THE PROCESS INDUSTRY FROM DESIGN TO INDUSTRIAL PILOT

Carlos A. Grande

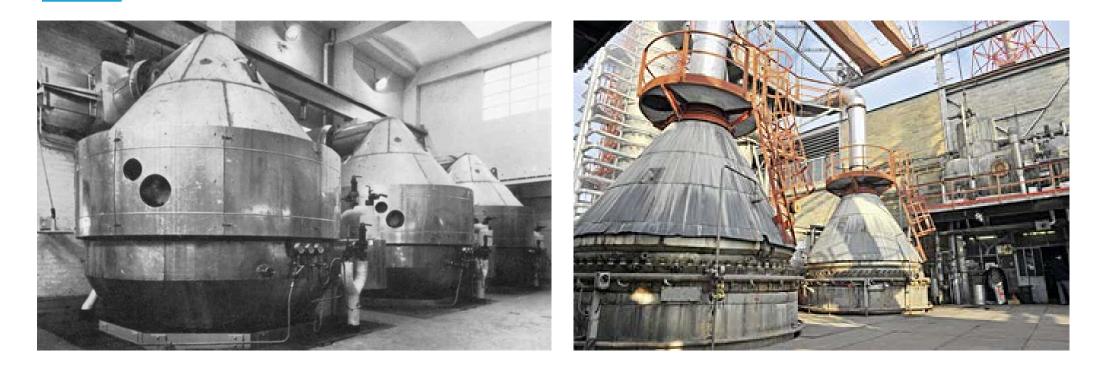
SINTEF. Forskningsveien 1. Oslo, Norway.

How design changed our society?



New buildings are not just buildings. They are "human-centered designed": functional, energy efficient, eco-efficient, etc.

Market revolutioned by design



Main functionality (transport) was flavoured with speed, safety, easier operation, etc.

Process industry is also looking for these "flavours"...

Meanwhile in the chemical industries...

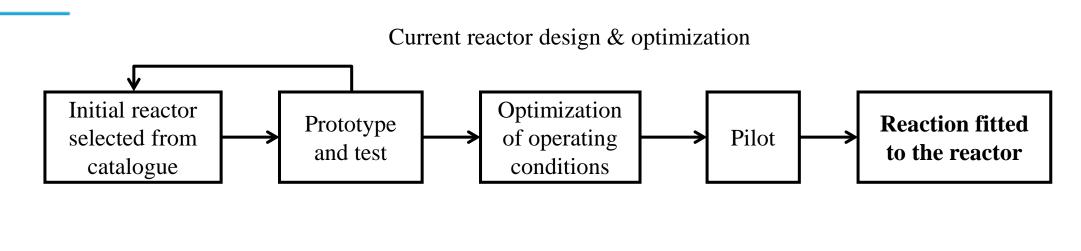
Plant in 1924

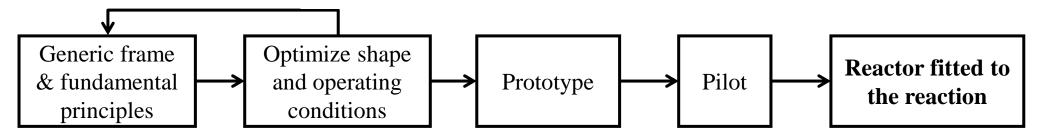
Plant in 2008

Are we using the design capabilities that we have now?

Some myths about 3D printing Is very expensive.

- Is slow for mass production
- Is only worthy for limited markets





What is the advantage of 3DP for process industry?

New paradigm in reactor design & optimization

Design the best reactor for your particular purpose

SINTEF

Applied design

 Design the "perfect" foam. A foam where all cells are equal and where you can tailor porosity.
Shape
Porosity
Strut width

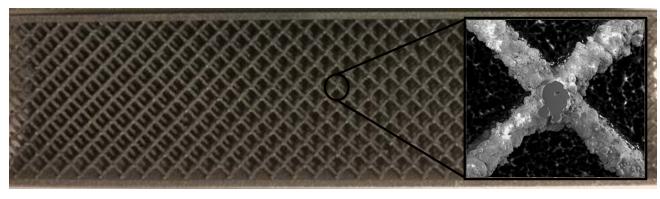
rosity.	Shape	Porosity	Strut width
	Cubic cell	$\varepsilon_f = \frac{\left[3(L-P)P^2 - 2P^3\right]}{L^3}$	(L-P)

Pressure drop and heat transfer properties of cubic iso-reticular foams

INTEF

Núria F. Bastos Rebelo^a, Kari Anne Andreassen^a, Luis I. Suarez Ríos^b, Juan C. Piquero Camblor^b, Hans-Jörg Zander^c, Carlos A. Grande^{a,*}

SINTEF Industry, P.O. Box 124, Blindern, N0314 Oslo, Norway


^b PRODINTEC Parque Científico Tecnológico de Gijón, Avda. Jardín Botánico, 1345, 33203 Gijón, Asturias, Spain

^e LINDE AG, Engineering Division, Dr.-Carl von Linde Straße 6-14, 82049 Pullach, Germany

Industrial design

• Tailor properties for pressure drop and heat transfer and scale-up.

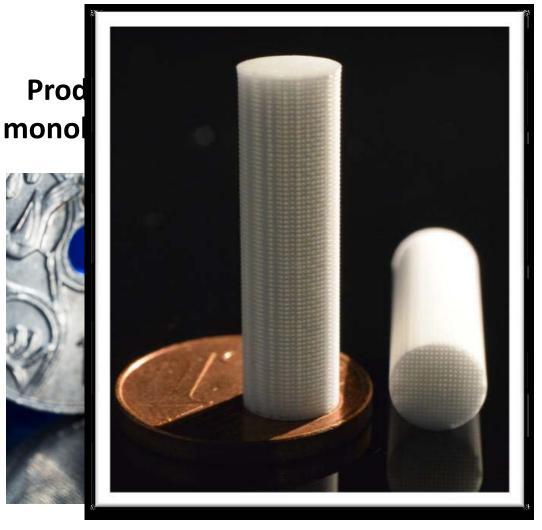
For which application?

• First-time trial of catalytic NO oxidation to NO₂ for nitric acid production.

PRINT CR3

First industrial pilot

• Catalytic converter of 7.5m installed in Yara (Porsgrunn).



This is also extensible to other areas

NO oxidation and hydrogenation reactions

PRINT CREDIT

SINTEF

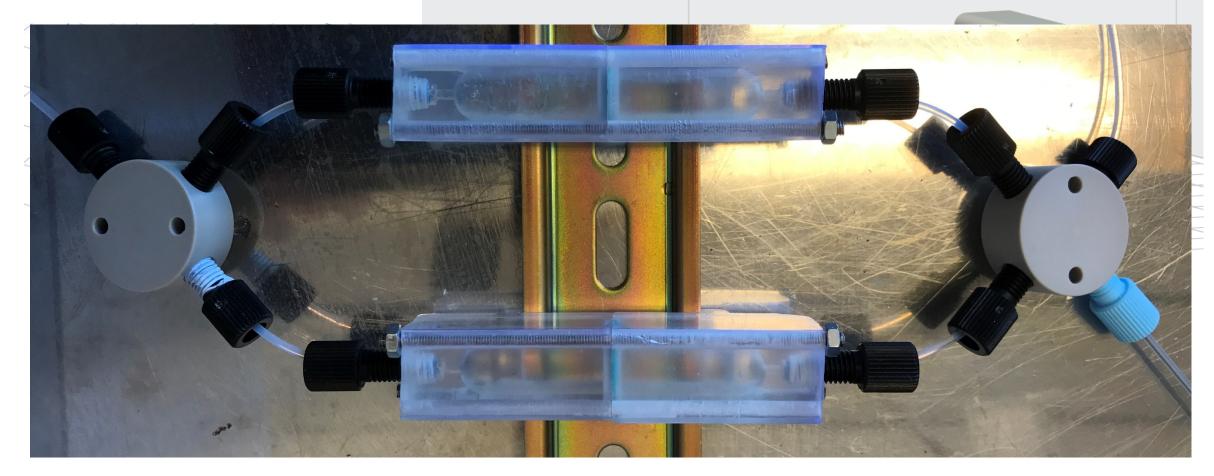
11

Paving the future: education

PRINT CREDIT

SINTEF

First European school for additive manufacturing applied to chemical industries Free registration


When: 30-31/08/2018 Location: Location: ICPF CAS, v.v. i, Prague, Czech Republic. http://www.icpf.cas.cz/en/contacts.

Program outline					
30/8		31/8			
08:30 - 09:00	Registration and gathering together	09:00 - 09:30	Pickup and Check your printouts. Discussion		
09:00 - 09:15	Welcome speech	09:30 - 10:15	3D printing comes with advanced modelling		
09:15 - 10:00	Fundamentals of 3D printing. Technology overview with real samples. (Petr Bláha, 3DARENA, Prague, Czech Republic)	10:15 - 11:00	What we need to learn deeper to incorporate 3DP in our CV?		
		11:00 - 12:00	Speaker 1. Advanced 3D printing of ceramic materials. Dr. Martin Schwentenwein		
10:00 - 11:00	3D printing by Prusa Research: present and the future, Jakub Doležal, Prusa Research, Prague, Czech Republic		Lithoz GmbH, Austria.		
		12:00 - 13:00	LUNCH		
11:00 - 12:00	The basic printing process, Jakub Doležal, Prusa Research, Prague, Czech Republic	13:00 - 14:00	Speaker 2. 3D printing of chemical reactors.		
12:00 - 13:00	LUNCH	14:00 - 15:00	Speaker 3. 3D printing for chromatography. Prof. Simone DiMartino. Edinburgh		
13:00 - 14:30	The first step in 3D printing. Build your CAD & render. Do your first printout. (FDM,		University, United Kingdom.		
	SLA printers, Prusa Research, ICPF)	15:00 - 15:30	Break / coffee		
14:30 - 15:30	What 3D printing can deliver to chemical industries?	15:30 - 16:30	Speaker 4. 3D printed catalysts. Dr. Vesna Middelkoop. VITO, Belgium.		
15:30 - 16:00	Break / coffee	16:30 - 17:00	Final remarks, picture and delivery of certificates.		
16:00 - 17:00	Application of 3D printing for the chemical industries.				
(Laboratory tour a	at ICPF with relevant demonstration examples of 3D printing utilization)				

12

Modules to teach more than chemistry

DIN rail dimensions

Acknowledgments

PRINT CREDIT

This work has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 680414. The project belongs to the SPIRE programme and information can be found in <u>www.printcr3dit.eu</u>.

We acknowledge the funding from the Research Council of Norway through the project 272729: New structured substrates for downstream processing of complex biopharmaceuticals. This project belongs to the m-era.net programme with Lithoz, IBET, Genibet and Cerpotech as partners.

Technology for a better society