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Why quantitative monitoring?

* Legal requirements for safe CO, storage:

e Containment monitoring: plume migration, potential leakages...

* Conformance monitoring: consistency between models and observed site
behaviour. Requires quantitative properties: pressure, saturation, stress
changes...

 How can geophysical monitoring provide quantification of
relevant rock physics properties?

 What is the uncertainty related to these estimates?

e Link to operational decision making.

e Can we do this in a cost-efficient way during and after the
injection?

Dean and Tucker, 2017
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Two-step geophysical inversion

Geophysical
inversion

Rock physics
inversion

Seismic data

CSEM data

9 100 W0 00 X0 %0 @00 T Mer 900 1od

Resistivity map

Saturation and fluid mixing maps

Figures from Romdhane and Querendez (2014),
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Two-step geophysical inversion

Geophysical Rock physics
inversion inversion
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Geophysical inversion
High resolution imaging at Sleipner
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P-wave velocity model derived from FWI at Sleipner ; the black line
corresponds to the injection well (15/9-A-16) in a projected view into
the plane of the seismic section
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Romdhane and Querendez, 2014
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GeOphySIca| Inversion The inverse of the Hessian of the misfit function being minimized
FWI

Unce rtainty assessment can be interpreted as the posterior covariance matrix Cpqg in @
local probabilistic sense (Tarantola, 2005; Zhu et al., 2016)

(left) Prior covariance. (right) Posterior
covariance. Small but clear reduction.
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(top) Close-up of plume region. (right) Extracted depth velocity profiles from 100 "equivalent models
10 "atx=2916 m. The red line corresponds to the velocity of the final FWI model.




Two-step geophysical inversion
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Bayesian rock physics inversion
Global optimization

* Inverse problem difficult because under-determined, non-linear and non-unique
solutions.

e Two stages to get statistically meaningful information:
e Global optimization: search ensemble of models with associated likelihood (MC, SA, NA...)
e Importance sampling: calculate Bayesian integrals (PPD, marginal distributions,

covariance...)

e Fast and analytic forward problem =» global exploration using Neighbourhood
algorithm (NA, Sambridge, 1999).
* Mix of good exploration of model space and "tendency" to look for the most likely

models.
* Give an ensemble of models representing "all information".

Forward problem: d = g(m)

Data likelihood function: L(d|m) = k exp (—%(d — g(m))TC[)l(d — g(m)))

: e . — (FWI
Data covariance matrix: Cp = Cppst
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Geophys. J. Int, (1999) 138, 727-746

Bayesian rock physics inversion
Importance sampling

Geophysical inversion with a neighbourhood algorithm—II.
Appraising the ensemble

Malcolm Sambridge
Research School of Earth Sciences, Instinure of Advanced studies, Australion National University, Canberva, ACT 0200, Austrafia.
E-mail: maleolmia rses.amu edw.an

* Bayesian inference framework: oy,,5:(m|d) = ¢ ppyrior(m) L(d|m)

* Need to infer statistically meaningful information from the ensemble of —
models: importance sampling.
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True model:
¢ =0.36, K= 2.56 GPa

==

 NA: adapted to different search methods (SA, MC, GA, NA...).

o

e Calculate approximated PPD everywhere in model space which is then
used for evaluation of Bayesian integrals.
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e Use Voronoi cells for multi-dimensional interpolant, then use Gibbs sampler in (KDE)
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We can then calculate Bayesian integrals: posterior mean model,
posterior model covariance matrix, resolution matrix and marginal
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Time-lapse strategy
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CO, partial saturation rock physics models

Partial saturation theories
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CO, partial saturation rock physics models
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Sleipner real data case
Results of rock physics inversion after appraisal

80% confidence interval
60% confidence interval

99% confidence interval 99% confidence interval 99% confidence interval
90% confidence interval 90% confidence interval 90% confidence interval
800 ™= 80% confidence interval 800 [ 80% confidence interval 800 [ 80% confidence interval 850/ 850
N 60% confidence interval N 60% confidence interval N 60% confidence interval
850 850 850
900 900
900 900 900
< T £ 950 £ 950
950 & as0 & es0 o a
1000
1000 1000 1000
1050
1050 1050 1050
9% confidence interval 99% confidence interval
0% confldence interval 90% confidence interval
s 80% confldence interval B 80% confidence interval
mm 60% confldence interval . 60% confidence interval
0.0 0.1 0.2 0.3 0.4 0 2 4 6 8 10 0 1 2 3 4 5 6 0.0 0.2 0.4 06 0.8 1.0 5 o 15 20 25 30 35 40
Porosity Dry bulk modulus (GPa) Dry shear modulus (GPa) €02 saturation Patchiness exponent

Monitor results: CO, saturation and
patchiness exponent

Baseline results: porosity, dry bulk and shear moduli




Pressure effects

b, = pore pressure

P, 1

21

A J

Vp = P-wave velocity
Vs = S-wave velocity
p = bulk density

A

Sco, = CO, saturation
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Pressure effects

pw = brine density
Pco, = CO, density
K,, = brine bulk modulus

p = bulk density

Fluid phases Kco, = CO, bulk modulus
b, = pore pressure
4
KU + " G
pw T = |—3—
) 1Pr T —P1 v p
pCO;2 Voigt Voigt
PVT average average
equations
KCOZ T > Kf T —
Fluid mixing Gassmann
formula equations
Rock frame
K, |
_’ —
Hertz-Mindlin, GD *l' Gassmann
Walton, ... equations
models

24e = confinement pressure
P, = differential pressure

K;, = dry rock bulk modulus

Gp = dry rock shear modulus

Ky = saturated rock (undrained) rock bulk modulus
G = saturated rock shear modulus

Vp = P-wave velocity
Vs = S-wave velocity
p = bulk density

Ky = saturated rock (undrained) rock bulk modulus

Sco, = CO, saturation

Voigt
average

=

Voigt
average

Gassmann
equations

Fluid mixing
formula
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Conclusions

Quantitative inversion carried out in two steps with uncertainty propagation.

Bayesian formulation is crucial for uncertainty assessment/quantification in CO,

storage monitoring to verify conformance.

Time-lapse strategy is crucial for definition of prior models.

Proper CO, saturation estimation requires joint inversion of seismic and EM dat
Final uncertainty range in CO, saturation for real data is quite narrow.

Pressure-saturation discrimination should be taken into account when pressure
effects are not negligible.

d.
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