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Outline

e Quantitative CO, monitoring: combination of geophysical imaging
with rock physics inversion

e Uncertainty assessment/quantification

* Value Of Information for CO, storage monitoring
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Two-step seismic inversion
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CO, injection at Sleipner

CO, separated from the produced gas in the
Sleipner Vest gas field.

CO, injection site since 1996.
Approximately 1 Million tonnes per year of
injected CO.,.

Injection into Utsira saline reservoir between
800 -1000 m depth.

Injection point is about 1010 m below sea
level.

Near critical state at reservoir conditions.
Storage reservoir: Utsira formation (Upper
Miocene to Lower Pliocene).

Utsira Formation
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Location of the Sleipner East field and sketch of injection
in Utsira formation (IPCC, 2005).
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Two-step seismic inversion

Sleipner CO, storage data
(Romdhane and
Querendez, 2014)

physics
inversion

Acoustic FWI on Sleipner
data (Romdhane and
Querendez, 2014)
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Porosity map (Dupuy et al, 2015)
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Methodology
Waveform imaging: FWI

Forward problem

 Waveform based imaging methods

* Potential to deliver highly resolved geophysical properties
e Finds the “best” model that minimises the misfit \_—/

Inverse problem

between observed and modelled data

e Choice: Frequency-space domain

e Large memory requirements

e Can efficiently handle large number of RHS

model parameter (for example Vp) ) recorded data

e Possibility to perform the inversion from low to high
frequencies

e Very useful to mitigate the non-linearity of the inverse problem

* Possibility to select few discrete frequencies for the inversion
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FWI for high resolution imaging at Sleipner
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P-wave velocity model derived from FWI at Sleipner ; the black line
corresponds to the injection well (15/9-A-16) in a projected view into
the plan of the seismic section SINTEF
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FWI results

P-wave model derived from FWI; the black line corresponds to
the injection well (15/9-A-16) in a projected view into the plan
of the seismic section
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e Clear indications of the
lateral extent of the low-
velocity CO, plume and the
internal geometry of CO,
saturated layers

daplh (m)

e Low velocity layers
observed at the target zone
with a thickness varying
between 10 m and 20 m ' i | @ SINTEF
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Uncertainty quantification method

A Misfit (m) Potential locations of inversion result

e Monitoring methods are based on waveform inversion.

Y

e |nversion means minimization of data misfit (between observed and
simulated data) and constraints by iterative subsurface parameter updates.

e Requires calculation of data misfit and its gradient and Hessian with
respect to the subsurface parameters.

e Uncertainty quantification based on "posterior covariance analysis".
Mathematical tricks ("preconditioned" Hessian and randomized SVD)
used for computational efficiency.

2% B

Welocity
(krnis)

- along the line

e "Equivalent models" (similar misfit) by sampling from posterior covariance.

100 equivalent velocity models

9 SINTEF



Uncertainty assessment of FWI results

750
850 (left) Prior covariance. (right) Posterior
E 950 covariance. Small but clear reduction.

N 1050

750
1150 850
2500 E 950

x [m] N 1050

1150

z[m]

0 2000 4000 6000
1500 2000 2500 3000 3500

% [m]

||
0 2000 4000 6000 8000 10000

750 . . .

WO b e eeme—
535(] d . - ——
950_ .." « — e
1050 5 Yoo - e e Sy e
1150 e , SR N Sy s
1500 2000 2500 3000 3500
X [m]

BN =
1600 1800 2000 2200 2400

vp [m/s]

Close-up of plume region. (right) Extracted depth velocity profiles from 100 "equivalent
models " at x=2916 m. The red line corresponds to the velocity of the final FWI model.

z [m]

730

800

850

900+

950

1000 -

1050

1100

1150

1200

1400

1600 1800 2000 2200 2400 2600
Wp [m/fs]

Eliasson and Romdhane, 2017

Successful uncertainty
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Two-step seismic inversion

Sleipner CO, storage data
(Romdhane and
Querendez, 2014)

physics
inversion
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data (Romdhane and
Querendez, 2014)

Saturation map (Bachrach, 2006)

Oftset (m)
EUIUU

i - i 8" e

Porosity map (Dupuy et al, 2015)

SINTEF



Rock physics models: relation between
seismic velocity and CO, saturation

Partial saturation theories
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Baseline and monitor strategy

physics
inversion

CO, saturation map (Yan et

Sleipner CO, storage Acoustic FWI on Sleipner al., 2017)
data (Romdhane and data (Romdhane and Dupuy et al., 2016, Geophysics
Querendez, 2014) Querendez, 2014)
Workflow:

1. Baseline data (1994): mapping of porosity + moduli (K, Gp)
* based on 1D log data and extended to 2D via seismic interpretation.
e 2D mapping using FWI.
2. Monitor data (2008): mapping of CO, saturations using baseline porosity and moduli maps as

a priori input
13
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Sleipner data, 2008
vintage

Example of post-stack time migrated
sections from the 2008 vintage
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Inline 1836: FW!I results
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Depth (m)

Inline 1836: FWI results, reservoir close-up
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Depth (m)

Baseline mapping from FWI (1994)
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Depth (m)

Baseline mapping from FWI (1994)
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Saturation maps (2008)
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1D comparisons, offset=3240m
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First insights regarding quantification

e 1stinversion step:
* High resolution estimates of seismic properties with FWI.
* Assessment/quantification of uncertainty related to FWI step.

 2"dinversion step for quantitative estimates of CO, saturations (and pressure) =
proper uncertainty propagation is needed.

e Pressure-saturation discrimination requires additional geophysical data/inversion.
* Proper quantitative estimates require extensive work on baseline models.
e Additional geophysical inputs (gravity, EM) can reduce uncertainties and trade-offs.

e The ability to quantify uncertainty means more reliable risk assessment and can help
to optimize geophysical surveys (minimize costs).

=» Integration using Value of Information concept
@ SINTEF



Value of information concepts

e Popular notion in decision making under
uncertainty

* Need to investigate how VOI concepts can be used
in the context of CO, monitoring

 Examples in petroleum exploration and production
industry

* Integration of VOI concepts with rock physics and spatial statistics
to make drilling decisions
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VOI for CO, monitoring

e Value function has to be defined

* Considering purshasing selected (addtional) geophysical data

e Examples: pre-stack seismic, EM data, gravimetry data

* Including fluid flow

e Maximize the avoidance of intervention costs could be
set as a value function

e Analysis examples:

e Risk assessment approach (Pawar et al., 2016, Bourne et al.,2014)

e Cost benefit analysis (Ringrose et al., 2013; Dean and Tucker, 2017)

e Benefit from lessons learned from existing/previous
storage projects

Benefit

In base Technology Mot in base
MMV Plan assessment MMV Plan

Dean and Tucker, 2017
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VOI for CO, monitoring
Activity

* Investigate which are the most important properties needed from the
geophysical monitoring to verify and update the reservoir and geomechanical
models.

e Combine with value-of-information concept for efficient updates and optimal
monitoring technology/layout.

* Investigate how fast flow modelling can be used to evaluate monitoring
strategies.
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