

British Geological Survey

Gateway to the Earth

4D seismic - monitoring and modelling

Jim White

(Gareth Williams, Andy Chadwick, Laurence Cowton, Anne-Kari Furre, Anders Kiaer)

BGS monitoring experience

BGS monitoring experience

CO₂ Injection at Sleipner

Image © Statoil

- CO₂ injection commenced in 1996.
- ~1 Mt of CO_2 injected per annum.
- Time lapse 3D seismic (1994, 99, 2001, 04, 06, 08, 10)
- 2D high resolution seismic (2006)

Sleipner – Plume evolution

Semi-permeable mudstones

Interpreted as ~9 distinct reflective CO_2 layers mappable in 3D.

Evolving in a systematic way through time.

Mapping the extent of the CO₂ distribution – Sleipner top layer

- Map view of the growth of the topmost CO₂ layer with time from the time-lapse seismic vintages in 2001, 2004, 2006, 2008 and 2010.
- Topography of base of caprock suggests buoyancy driven infill.

White, J.C., Williams, G.A., Chadwick, R.A., Furre A-K., & Kiear, A., 2018, Sleipner: the ongoing challenge to determine the thickness of a thin CO₂ layer, International Journal of greenhouse Gas Control, 69, 81-95.

Volumetrics

BGS published review of innovative techniques to overcome problem of vertical seismic resolution.

Enables layer thicknesses to be determined by most suitable method.

Spatial extent and thickness of layer allow volumetric calculation of stored CO_2 .

Spectral

2010IP

2.44

1.75

decomposition

Time-

shifts

1.93

1.37

2.65

1.89

2.22

6473000 6472000 6471000 439000 X (m) **Time-lapse** Composite Corrected amplitudes measured layer temporal spacings 2.42 3.10

1.72

© NERC All rights reserved

CO₂ volume,

x 10⁶ m³ CO₂ mass,

mT

Spectral

2010TL

2.39

1.70

decomposition

Conformance measures

Three main requirements for transfer of responsibility at site closure

1. No detectable leakage

2. Observed behaviour conforms with modelled behaviour

3. Site is evolving towards long-term stability

Models with baseline knowledge

Key parameters:

- Properties intra-reservoir mudstones
- Reservoir temperature (CO₂ properties)
 - Properties of the reservoir sand

Permeable or impermeable intra-reservoir mudstones give rise to single spreading layer

'Semi-permeable' intra-reservoir mudstones give rise to multiple spreading layers

© NE

Performance measure: volume of top Utsira reservoir - 1996

Darcy flow simulation

Sleipner – top sand wedge

High permeability channel – 3D gravity current

High permeability channel – 3D gravity current

BGS monitoring experience

Injection at Snøhvit

- Two phases of CO_2 injection into the Tubåen formation and the Sto Formation.
- Reservoirs cut into E-W trending fault blocks.
- Tubåen formation injection 0.5 Mtons injected over a 16 month period.
- Tubåen approximately 100 m thick, at 2565-2665 m depth below sea surface.
- Stø approximately 85 m thick, from 2450 m
- Time lapse 3D seismic (2003, 2009, 2011, 2012).

Injection perforations

Snøhvit

- Down hole pressure (blue from pressure gauge located at ~1800 m depth)
- Cumulative injection is shown in green
- Seismic survey acquisition dates are marked with a yellow cross
- Change from Tubåen to Stø injection is marked by the change from orange to red on the x-axis

Seismic data

The time-lapse difference data from the region bounded by the black box.

Injection amplitude

The difference between the grids

Modelling reveals the lateral extent of the anomaly is too big for a fluid substitution (CO_2 replacing brine) effect.

Two methods to define pressure response

Spectral analysis to derive layer thickness (White et al., 2015).

The inverted pressure and saturation changes from Grude *et al.* (2013).

Results show a striking correlation.

(a) Pressure change (MPa)

Saturation

(c) Peak > 25 Hz

Seismic response

The lateral extent of Stø anomaly more confined.

Imaging suggests conical distribution of CO₂.

Modelling and analysis

 Reservoir flow modelling (Osdal et al., 2015) and time domain seismic analysis highlight different growth pattern for CO₂ layer.

Thickness estimates

Time-lapse amplitude analysis

Spectral analysis

Conclusions/Questions

- Small volumes of CO₂ can be images with 4D seismic technique.
- Evidence of conformance is provided by geophysical monitoring.
- How can this conformance be quantatively defined?
- What form will the inputs data to the conformance methodology take?

Acknowledgements

- This work was carried out under the *DiSECCS* project, funded by the UK EPSRC and the **BIGCCS** Centre, funded by the Norwegian research program FME initiative.
- Additional support was provided by the NCCS
 Centre, funded by the Norwegian research program FME initiative.

