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Why quantitative monitoring?

Dean and Tucker, 2017

e Legal requirements for Measurement, Monitoring and
Verification:

e Containment: plume migration, potential leakages...

e Conformance: consistency between models and observed site behaviour.
Requires quantitative measurements: pressure, saturation, stress changes... M
e How can geophysical monito ring provide quantification of e ——————"—
relevant rock physics properties? :

 What is the uncertainty related to these measurements?
Link to operational decision making. £ oo

APPLICATION

Benefit

e Can we do this in a cost-efficient way over the whole

duration of the injection (and hundred(s) years after the = x
Site iS Closed)? oo pirbarire et o

vellow oval = not in base MMV plan. (For interpret. of the
in this figure legend, the reader is referred to the web version of this article
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Two-step geophysical inversion

Geophysical
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depth (m)

Geophysical inversion
High resolution imaging at Sleipner
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P-wave velocity model derived from FWI at Sleipner ; the black line
corresponds to the injection well (15/9-A-16) in a projected view into
the plane of the seismic section
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GeOPhySicaI Inversion The inverse of the Hessian of the misfit function being minimized

. can be interpreted as the posterior covariance matrix in a local
U ncertalnty assessment probabilistic sense (Tarantola, 2005; Zhu et al., 2016)
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(left) Prior covariance. (right) Posterior
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750 | %
1150 —
1500 2500 800 | -

B
0 2000 4000 6000

x [m]

850

e R
0 2000 4000 6000 8000 10000

900+

950

E
N 1000}

E‘ 1050 |

: 1100

“ 1150 e
1500 2000 2500 3000 3500 ool = -
X [m] 1400 1600 1800 2000 2200 2400 2600
Vp [m/s]
EHE e Eliasson and Romdhane, 2017
1600 1800 2000 2200 2400
vp [m/s]

Successful uncertainty
(top) Close-up of plume region. (right) Extracted depth velocity profiles from 100 "equivalent models Ha : :
9  "atx=2916 m. The red line corresponds to the velocity of the final FWI model. quantlﬁcatlon and generatlon of SINTEF

equivalent models



Two-step geophysical inversion

Seismic data

CSEM data
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Resistivity map
Figures from Romdhane and Querendez (2014), 10

Park et al. (2013), Bge et al. (2017), Dupuy et al.
(2017), Yan et al. (2018)
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Rock physics inversion
Bayesian formulation

e Forward problem: d = g(m)

e glcannot be computed analytically =» optimization method: deterministic inversion (search maximum of the PPD) or
stochastic/probabilistic inversion (produce samples from the PPD).

* Data likelihood function: L(m|d,,;) = k exp (—%(dobs — g(m))TCgl(dobs — g(m)))

e Bayesian inference: update of prior distribution to the posterior distribution by making use of the observed information
(Tarantola, 2005).

* Bayesian inverse problem formulation: 0;,,5: (M) = ¢ pprior (M) L(M|d5)

0p0st (M) = posterior probability density (PPD)
¢, k = normalization constants
Pprior (M) = a priori probability density
L(m|d,;,) = data likelihood function
Cp = data covariance matrix

d=d , =data vector (seismic, velocities, resistivities, densities, quality
factors, impedances...)

m=model vector (rock physics properties: saturation, porosity...)
g=rock physics model (Biot-Gassmann equations, Archie Law...)

SINTEF



Rock physics inversion

Direct search with neighbourhood algorithm

* Inverse problem difficult because under-determined,
non-linear and non-unique solutions.

e Linear or linearized local optimization not working, but
fast and analytic forward problem =2 global exploration
using Neighbourhood algorithm (NA, Sambridge, 1999):

e Only 2 control parameters.

 Model space guided exploration.

* Mix of good exploration of model space and
"tendency" to look for the most likely models.

e Give an ensemble of models representing all
"information".

* Need to infer statistically meaningful information from
the ensemble of models: importance sampling.

Number of generated models:
a) 10

b) 100

c) 1000

d) Fit map
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Geopliys. S T, (1999) 138, 727-746

- . . Geophysical inversion with a neighbourhood algorithm—II.
ROCk p hVSlCS |nve rS|O n Appraising the ensemble
Appraisal step and importance of sampling Mmoo st o s s

We use Sambridge (1999) neighbourhood algorithm.

Adapted to different search methods (simulated annealing, MC, genetic algorithms, neighbourhood
algorithm...).

Calculate approximated PPD everywhere in model space which is then used for evaluation of Bayesian
integrals.

e Use Voronoi cells for multi-dimensional interpolant, then use Gibbs sampler in neighbour cells (random walks).

We can then calculate Bayesian integrals: posterior mean model, posterior model covariance matrix,
resolution matrix and marginal distributions.

Appraisal step implemented in Python and Go: soon available open source (github).

13 SINTEF
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Sleipner case study
Time-lapse strategy
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Sleipner case study
CO, partial saturation rock physics models

17

Effective fluid phase plugged into (Biot-)
Gassmann equations: different ways of

calculating effective fluid bulk modulus.

Brie equation (Brie et al., 1994):
Ky = (Kw — Kco,)S% + Kco,

Patchiness/Brie exponent e:
e e =40 => uniform mixing
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Sleipner case study
CO, partial saturation rock physics models
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Synthetic case e model
Baseline, porosity search step and PPD after appraisal ¢ =0.36
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Sleipner real data case
Results of rock physics inversion after appraisal
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Conclusions

 Bayesian inversion is crucial for uncertainty assessment/quantification in CO,
storage monitoring to ensure conformance.

e Quantitative inversion carried out in two steps with uncertainty propagation.

* Time-lapse data allows for quantitative use of prior models derived from baseline
data.

e Proper CO, saturation estimation requires joint inversion of seismic and EM data.

* Final uncertainty range in CO, saturation for real data is quite narrow.

SINTEF
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