TR A5610

Overview on different types of energy storages.

Nils Arild Ringheim

February 2002

		TECHNICAL REPORT			
()) SI	NTEF	SUBJECT/TASK (title)			
SINTEF Energy Research		Overview on different types of energy storages			
Ν	IO-7465 Trondheim, IORWAY				
	Sem Sælands vei 11	CONTRIBUTOR(S)			
Telephone: +47 73 59 72 00 Telefax: +47 73 59 72 50		Nils Arild Ringheim			
www.energy.sintef.no		CLIENTS(S)			
Enterprise No.: NO 939 350 675 MVA		Norsk Hydro			
TR NO.	DATE	CLIENT'S REF.	PROJECT NO.		
A5610	2002-02-28	Torgeir Nakken	12x207		
ELECTRONIC FILE CODE		RESPONSIBLE (NAME, SIGN.)	CLASSIFICATION		
020106nar111849		Nils Arild Ringheim	Unrestricted		
ISBN N0.	REPORT TYPE	RESEARCH DIRECTOR (NAME, SIGN)	COPIES PAGES		
82-594-2268-9		Petter Støa	12 68		
DIVISION	•	LOCATION	LOCAL FAX		
SINTEF Energiforskning AS		Sem Sælands v. 11	+47 73 59 72 50		

RESULT (summary)

Electrochemical capacitors have low specific energy, but very good specific power, and are applicable for power pulse durations between 0.01-100 s. Typical applications are power quality related problems, UPS applications and transmission line stability, and as a complementary storage with batteries, fuel cells and diesel electric systems.

Batteries are very diverse in characteristic and application. Well-known technology like lead-acid and nickelcadmium are used in large battery energy storages (tens of MWh). Flow batteries (Regenesys, Redox and Zinc/Bromine) are promising for very large-scale storages (>100 MWh). High temperature sodium-sulfur batteries (NaS) are also installed in some MWh-plants. New technology like Li-ion batteries shows promising characteristics, but is not mature for larger energy storage application. Lead-acid is a clear winner on initial cost, followed by NiCd and then NiMH and at last Li-ion. Li-ion is not inherently expensive: Cost is very volume sensitive. (Metal-air batteries are the least expensive alternative, but are not mature for energy storage applications with electrical recharge.) In addition, flow batteries are cost effective in very large-scale energy storages.

Life cycle cost is more important in energy storage than initial costs. It is therefore important to consider effect of operating conditions on life. Main influence comes from temperature and cycling. (E.g. lead acid batteries shorten their lifetime with 50 % for every 8°C increase, while NiCd only cuts by 20 %.)

Flywheels are appropriate for time durations up to some minutes and energy densities in the kWh-range. Lowspeed flywheels are commercial available, while high-speed solutions with higher energy densities are limited. Applications like battery replacements in UPS are reported. The initial cost of low-speed flywheels is rather low, and they can be an alternative to batteries at low energy ratings.

SMES applications are short-time, high power pulses, like power quality improvements in industrial plants or voltage/VAR support and transmission stability in utility transmission lines. Their maturity and availability is limited (one commercial manufacturer worldwide), and they are expensive: For most application, investment costs and losses are too high compared with other storage devices. Diurnal load leveling is not a cost-effective application for SMES now or in the long term.

KEYWORDS					
SELECTED BY AUTHOR(S)	energy storage	electrochemical energy storage			
	flywheel	superconducting magnetic energy storage			

TABLE OF CONTENTS

1	SUMMA	ARY	4
2	INTROI	DUCTION	7
	2.1 RE	FERENCES	7
3	BATTE		
-	3.1 FU	NCTIONAL DESCRIPTION	
	3.1.1	Electrode basics	
	3.1.2	Electrolyte basics	
	3.1.3	Definitions and nomenclature	
		AD-ACID TYPES	
		KALINE BATTERIES	
	3.3.1	Ni-Cd	
	3.3.2	Ni-MH	
		ΓΥΡΕS	
	3.4.1	Li-polymer	
	3.4.2	Li-polymer	
		DIUM SULFUR (NaS)	
		TAL-AIR BATTERIES	
		OW BATTERIES	
	3.7.1	Redox batteries	
	3.7.1	Regenesys batteries	
	3.7.2	Zinc/Bromine batteries	
		MPARISON OF BATTERY TYPES	
	3.8.1	Energy and power densities	
	3.8.2	Life time	
	3.8.3	Life cycles	
	3.8.3	Temperature	
	3.8.5	Efficiency	
	3.8.6	Summary of battery comparison	
	3.9 RE	FERENCES	
4		ROCHEMICAL CAPACITORS	
4		NCTIONAL DESCRIPTION	
		IN CHARACTERISTICS	
		STS AND AVAILABILITY	
		VIRONMENTAL ASPECTS	
		PLICATIONS, PILOT PLANTS AND OPERATIONAL EXPERIENCE	
		NUFACTURERS AND CENTRE OF COMPETENCE	
		FERENCES	
5		EELS	
5		NCTIONAL DESCRIPTION	
		IN CHARACTERISTICS	
		AILABILITY AND COSTS	
		VIRONMENTAL ASPECTS	
		PLICATIONS, PILOT PLANTS AND OPERATIONAL EXPERIENCE	
	5.5 AP		
	5.5.1 5.5.2	Applications Pilot plants and operational experience	
	5.5.4	ו חסר אומריס אות סירומוסומו באירווטונים	

	5.6	MANUFACTURERS AND CENTRE OF COMPETENCE	51
	5.6.	1 Manufacturers	51
	5.6.2	2 Centre of competence	52
	5.7	REFERENCES	
6	SUF	PERCONDUCTING MAGNETIC ENERGY STORAGES (SMES)	54
	6.1	FUNCTIONAL DESCRIPTION	
	6.2	MAIN CHARACTERISTICS	55
	6.3	AVAILABILITY AND COSTS	56
	6.4	ENVIRONMENTAL ASPECTS	58
	6.5	APPLICATIONS, PILOT PLANTS AND OPERATIONAL EXPERIENCE	59
	6.5.	11	
	6.5.	2 Pilot plants and operational experience	
	6.6	MANUFACTURERS AND CENTRE OF COMPETENCE	60
	6.6.		
	6.6.	2 Centre of competence	61
	6.7	REFERENCES	
7		MPARISONS BETWEEN THE DIFFERENT ENERGY STORAGE ELEMENTS	
T	HEIR A	APPLICABILITY	
	7.1	ENERGY AND POWER DENSITIES	63
	7.2	APPLICATIONS	
	7.3	COST COMPARISONS	65
	7.4	LOSSES	
	7.5	REFERENCES	67

🖲 SINTEF

1 SUMMARY

Based on a literature study, four different energy storage technologies are reviewed: Electrochemical capacitors, batteries, flywheels and superconducting magnetic energy storages (SMES). The presentation is general, but emphasizes stationary applications. Portable (consumer) electronics and vehicle specific applications are not included.

The applicability of different energy storages is strongly influenced by the application. A general presentation relating the power and energy rating with the duration of the pulse is shown in table 1.1.

E	nergy storage	Typical power rating [MW]	Typical discharge time	Application
Electrochemical capacitor		0,0001-0,1	seconds to minutes	Power quality, UPS, complementary storage to batteries, fuel cells, diesel electric etc.
	Lead acid	0.001-50	minutes to hours	Power quality, reliability, frequency control, reserve, black start, UPS
Battery	Advanced (VRLA, NaS, Li)	0,001-1	minutes to hours	Various, including utility energy storage
	Flow batteries	0,1-100	minutes to tens of hours	Power quality, reliability, peak shaving, reserve, energy management, integration of renewables
Flywheel		0,005-1,5	seconds to minutes	Power quality, battery replacement in UPS
SMES		0,01-2	\leq seconds	Transmission stability, voltage/VAR support, power quality

 Table 1.1:
 Different energy storages and their applications

Table 1.2 shows typical characteristics of the different energy storages

Tuble 1.2. Typical characteristics of anterent chergy storages.									
Enorgy storage	Energy density		Power density		Efficiency	Life time	Recharge	Maintenance	Maturity
Energy storage	[Wh/kg]	[Wh/dm ³]	[W/kg]	[W/dm ³]	[%]	[cycles years]	time	Wantenance	Waturny
Electrochemical capacitors	1-10	0,01-20	400-4000	10 ² -10 ⁶	90-95	>10 ⁵ >10	Seconds to minutes	None	Good, increasing
Batteries	10-200	10-400	20-600	10-1000	50-95	500-104 2-20	Minutes to hours	From weeks to none	Very good
Flywheels	30-200	1-?	180- 30000	125-667	88-93	10 ⁵ 20	Minutes	Months to annual	Good/modest, increasing
SMES	4 –75	-	10 ³ -10 ⁵	-	90-99	>10 ⁵ 20	Minutes (µ-SMES)	Annual	Poor, increasing slowly

 Table 1.2:
 Typical characteristics of different energy storages

Table 1.3 shows availability, costs and environmental aspects.

Energy storage		Capital costs	Availability	Environmental impact	
		[\$/kWh \$/kW]	~ .		
Electroche	mical capacitors	83500 250-1000	Good	Very good	
Battery	Lead acid	200-700 240-700 ¹⁾	Very good	Modest to very good	
	Advanced	Very varying dependent	Good to very good (depending on	Depending on type of battery. (Future ban of	
	(VRLA, NaS,	of technology, but	technology)	cadmium?)	
	Li)	always more expensive			
		than lead-acid			
	Flow batteries	175-600 -	Modest		
Flywheel		300-25000 300-500	Low-speed flywheel available	Good.	
			High-speed flywheel hardly available	Uncertainty: Safety problem on mechanical	
				damage of rotor?	
SMES		~2,4 million ~670	Poor. One manufacturer worldwide	Good	
				(Magnetic field in surroundings of	
				superconductor. Possible health effect?)	

Electrochemical capacitors have low specific energy, but very good specific power, and are applicable for power pulse durations between 0.01-100 s. Typical applications are power quality related problems, UPS applications and transmission line stability, and as a complementary storage with batteries, fuel cells and diesel electric systems.

Batteries are very diverse in characteristic and application. Well-known technology like lead-acid and nickel-cadmium are used in large battery energy storages (tens of MWh). Flow batteries (Regenesys, Redox and Zinc/Bromine) are promising for very large-scale storages (>100 MWh). High temperature sodium-sulfur batteries (NaS) are also installed in some MWh-plants. New technology like Li-ion batteries shows promising characteristics, but is not mature for larger energy storage application.

> Metal-Arr Batteries
> Flow Batteries
> Pumped Hydro
>
>
> Other Adv. Batteries
> NAS Battery
> Compressed Air
>
>
> Other Adv. Batteries
> Compressed Air
>
>
> U-lion
> Ni-Cad
>
>
> Lead-Acid Batteries
> Methode of the super Capacitors
>
>
> High Energy Fly
> Other Adv. Batteries
>
>
> High Energy Fly
> Super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Methode of the super Capacitors
> Methode of the super Capacitors
>
>
> High Energy Fly
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
>
> Super Capacitors
> Methode of the super Capacitors
>
> <

A graphical presentation of some battery comparisons are given below:

Figure 1.1 Guidelines for typical applications of energy storages plotted in a diagram of discharge time vs. system power rating

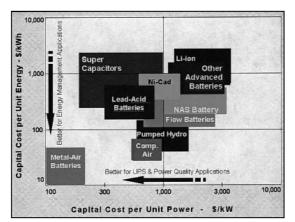


Figure 1.4 Capital cost comparisons for different energy storage techniques.

Lead-acid is a clear winner on initial cost of different battery technologies, followed by NiCd and then NiMH and at last Li-ion. Li-ion is not inherently expensive: Cost is very volume sensitive. (Metal-air batteries are not mature for energy storage applications with electrical recharge.) In addition, flow batteries are cost effective in very large-scale energy storages.

Life cycle cost is more important in energy storage than initial costs. It is therefore important to consider effect of operating conditions on life. Main influence comes from temperature and

cycling. (E.g. lead acid batteries shorten their lifetime with 50 % for every 8°C increase, while NiCd only cuts by 20 %.)

Flywheels are appropriate for time durations up to some minutes and energy densities in the kWhrange. Low-speed flywheels are commercial available, while high-speed solutions with higher energy densities are rather limited. Applications like battery replacements in UPS are reported. The initial cost of low-speed flywheels is rather low, and they can be an alternative to batteries at low energy ratings.

SMES applications are short time, high power pulses, like power quality improvements in industrial plants or voltage/VAR support and transmission stability in utility transmission lines. Their maturity and availability is limited (one commercial manufacturer worldwide), and they are expensive: For most application, investment costs and losses are too high compared with other storage devices. Diurnal load leveling is not a cost-effective application for SMES now or in the long term.

The figures in this report vary over a wide range, since different literature sources are not necessarily compatible. In order to get more precise information, two different approaches are possible:

- Inquiry to manufacturers (Technical questions, costs questions etc.)
- Visit manufacturers, research organisations or highly skilled users with experience from usage of the different energy storages.

If inquiry to manufacturers is done, it is important to make sure that the answers easily can be compared. This can be achieved if the questions are related to an installation or application, where the necessary requirements are specified.