Abstract:
The presented memo discusses the development and the realisation of a shunt active filter. The presented active filter is realised by use of a PWM-converter with 10kHz switching frequency. This memo discusses simulation, laboratory development and realisation. The set-up is prepared and tested for the work on three-wire 230V line-line grid. The described filter works with current compensation so that the set-up is able to improve all kinds of currents. The filter can work in two modes:

- Compensation for harmonic current
- Compensation for reactive power and harmonic currents

However, the improvement for voltage distortion is not guaranteed because several problems are accrued which are improved and discussed but not completely solved. These problems are:

- Delay between incoming current measurements and output of the converter current
- Oscillation of the inserted ripple filter (LC) with the grid inductance

The control of the active filter is realised by an Infineon C167 micro controller (µC). The principal working mechanism can be seen in Figure 1-1 (Page 5). An Illustration of the shunt active filter operation is shown in Figure 7-3 on Page 75.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>2 MODELLING OF A SHUNT ACTIVE FILTER</td>
<td>6</td>
</tr>
<tr>
<td>2.1 The model</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Power grid</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Three-phase diode rectifier load (B6)</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Front end converter as active filter</td>
<td>7</td>
</tr>
<tr>
<td>2.5 The control module</td>
<td>8</td>
</tr>
<tr>
<td>2.5.1 The phase locked loop (PLL)</td>
<td>9</td>
</tr>
<tr>
<td>2.5.2 The DC-voltage controller</td>
<td>10</td>
</tr>
<tr>
<td>2.5.3 The generation of the three phase current references</td>
<td>10</td>
</tr>
<tr>
<td>2.5.4 The current controller</td>
<td>12</td>
</tr>
<tr>
<td>2.5.5 The pulse width modulation (PWM) of the gate pulses</td>
<td>13</td>
</tr>
<tr>
<td>3 SIMULATION RESULTS</td>
<td>15</td>
</tr>
<tr>
<td>3.1 DC-voltage controller operation (file: ex01.psc)</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Generation of the current references (file: ex01.psc)</td>
<td>16</td>
</tr>
<tr>
<td>3.3 Current controller operation (file: ex01.psc)</td>
<td>17</td>
</tr>
<tr>
<td>3.4 Pulse width modulation (file: ex01.psc)</td>
<td>17</td>
</tr>
<tr>
<td>3.5 Phase locked loop (file: ex02.psc)</td>
<td>18</td>
</tr>
<tr>
<td>3.6 Accrued problems</td>
<td>19</td>
</tr>
<tr>
<td>3.6.1 Oscillation of the ripple filter capacitor with the grid inductance (file: ex03.psc)</td>
<td>19</td>
</tr>
<tr>
<td>3.6.2 Delayed converter current and its effect to the active filter task (file: ex04.psc)</td>
<td>19</td>
</tr>
<tr>
<td>3.7 AC-side waveforms (active filter tasks for RL-DC-load at the rectifier)</td>
<td>20</td>
</tr>
<tr>
<td>3.7.1 Active filtering for $L_G=650\mu H$ and $L_{AC}=300\mu H$ (file: ex04.psc)</td>
<td>21</td>
</tr>
<tr>
<td>3.7.2 Active filtering for $L_G=50\mu H$ and $L_{AC}=300\mu H$ (file: ex05.psc)</td>
<td>23</td>
</tr>
<tr>
<td>3.7.3 Active filtering for $L_G=50\mu H$ and $L_{AC}=0$ (file: ex06.psc)</td>
<td>24</td>
</tr>
<tr>
<td>3.8 Active filtering for a rectifier with RC-DC-load (file: ex07.psc)</td>
<td>25</td>
</tr>
<tr>
<td>4 EXPERIMENT SET UP OF THE SHUNT ACTIVE FILTER</td>
<td>28</td>
</tr>
<tr>
<td>4.1 The power grid</td>
<td>28</td>
</tr>
<tr>
<td>4.2 B6 diode rectifier load</td>
<td>28</td>
</tr>
<tr>
<td>4.2.1 Inductive DC load</td>
<td>28</td>
</tr>
<tr>
<td>4.2.2 Capacitive DC load</td>
<td>31</td>
</tr>
<tr>
<td>4.3 The active filter</td>
<td>32</td>
</tr>
<tr>
<td>4.3.1 Control module</td>
<td>32</td>
</tr>
<tr>
<td>4.3.2 IGBT-converter</td>
<td>33</td>
</tr>
<tr>
<td>5 CONTROL SOFTWARE</td>
<td>35</td>
</tr>
<tr>
<td>5.1 Interrupt structure</td>
<td>35</td>
</tr>
<tr>
<td>5.2 Block diagram of the control system</td>
<td>36</td>
</tr>
</tbody>
</table>
6 RESULTS AND MEASUREMENTS ... 52
 6.1 Accrued problems ... 52
 6.1.1 Oscillation of the filter capacitor with the grid inductance......... 52
 6.1.2 Delayed current (Dead time between measurement and current output) 54
 6.2 Harmonic current and reactive power compensation for a diode rectifier 56
 6.2.1 230V over variac, additive commutation inductance 58
 6.2.2 230V direct from the grid, additive commutation inductance 62
 6.2.3 230V direct from the grid, no additional inductance 66
 6.2.4 Rectifier with capacitive DC-load ... 70

7 SUMMARY AND CONCLUSION .. 74

8 REFERENCES .. 77

9 APPENDIX A .. 78
 9.1 Parameters used in the simulation model ... 79
 9.2 Calculation of specific parameters ... 83

10 APPENDIX B .. 84
 10.1 Further calculations ... 84
 10.2 Used components .. 84
SIP-strategic institute programme

”Power electronics and energy storage technologies for cost- and energy efficient power systems”

AN 02.12.69 - Realisation of a 20kVA shunt active filter (Andre Buettner)
Why filter?

Problem:
Insufficient power quality in low voltage AC-systems

Reasons:
- External disturbances (power outages, sags a.s.o.)
- Combined use of linear and non-linear loads (consumer of non-sinusoidal currents) causes current harmonics
Compensation for harmonic currents

Solution 1:
- Passive harmonic filter
 - Compensation for a specific harmonic
 - Problem: causes oscillation with the grid inductance

Solution 2:
- Active filter
 - Compensation for a selected or all harmonics
 - Compensation for reactive power is possible
Types of active filters

- **Series active filter**
 - In series with the line
 - Need to conduct the complete line current

- **Shunt active filter**
 - Parallel with the load
 - Need to match the line voltage

- **Hybrid filter**
 - Combination of passive filter and active filter
 - Parallel and series
 - Cost effective solution in certain cases
Working mechanism for a shunt active filter

AC three-phase source

i_{Mains}

Active filter

i_{Filter}

i_{Measure}

Diode rectifier

i_{Rectifier}
Derivation of the filter algorithm

\[i_{\text{mains}} = i_{\text{rectifier}} - i_{\text{filter}} \]

With the supposition of an ideal controller results

\[i_{\text{filter}} = i_{\text{ref}} \]

\[i_{\text{ref}} = i_{\text{DC-link-controller}} + i_{\text{Compensation}} \]

DC – link current negligible

\[i_{\text{DC-link-controller}} \approx 0 \]

\[i_{\text{ref}} = i_{\text{Compensation}} \]
Shunt filter algorithms

- Compensation for harmonic currents

\[i_{\text{Compensation}} = i_{(2..n)\text{rectifier}} \]

so that

\[i_{\text{Compensation}} = i_{\text{rectifier}} - i_{(1)\text{rectifier}} \]

- Compensation for harmonic currents and reactive power

\[i_{\text{Compensation}} = i_{(2..n)\text{rectifier}} + i_{(1)\text{reactive}} \]

so that

\[i_{\text{Compensation}} = i_{\text{rectifier}} - i_{(1)\text{active}} \]
Main results

- Filter is able to improve all types of current shapes
- Possibility of compensation for harmonic currents and reactive power

Compensation for harmonic currents

Current improvements
- 5th harmonic from 22% to 3.5%
- THD from 25% to 5%

Voltage improvement
- 5th harmonic from 2.6% to 1.9%
- THD from 2.8% to 2.2%

Compensation for harmonic currents and reactive power

Annotations
- 1 phase voltage
- 2 mains current
- 3 rectifier current
- 4 converter current
Accrued problems

- Oscillation of the ripple filter capacitor with the grid inductance
- Delayed converter current
LC-oscillator \((C_{\text{ripple}} \text{ filter} \text{ and } L_{\text{grid}}) \)

- Simulation
 - Graph1 – Line-line voltage
 - Graph2 – Rectifier current
 - Graph3 – Mains current

- Laboratory
 - Blue – non-oscillating signals
 - 1 line-line voltage
 - 2 mains current
 - Red – oscillating signals
 - 3 line-line voltage
 - 4 mains current
Delayed converter current

Simulation
- Graph1 – Rectifier current
- Graph2
 - red mains current
 - black converter current

Laboratory
- Signal 1 – Mains current
- Signal 2 – Rectifier current
- Signal 3 – Converter current
Different delays

- **Micro controller delay**
 - delay between rectifier current measurement and output of the current reference

- **Current controller delay**
 - delay between reference and output of the fire pulses

- **IGBT on delay**
 - Turn on turn off of the gate drivers (negligible small)

Annotations
- Signal1 – Rectifier current
- Signal2 – Current reference
- Signal3 – Converter current
Micro controller delay

- between current measurement and current reference output
- 60µs - fastest interrupt repeating time

Annotations
- Signal1 – Rectifier current
- Signal2 – Current reference

Improvements
- faster AD-converter
- Decrease number of channels in use
Current controller delay

- between current reference and output of the converter current
- 0 to 150µs – depending on the reference frequency
- bandwidth problem

Annotations
- Signal1 – Current reference
- Signal2 – Converter current

Improvements
- Faster current controller
- Different typ of current controller
Diode rectifier with inductive DC-load

- 5th current harmonic 22%
- Current THD 25%-29%
 (Depending on the commutation)
Different constellations for the rectifier

- $L_{\text{Commutation}} = 980 \mu \text{H}$

- $L_{\text{Commutation}} = 350 \mu \text{H}$

- $L_{\text{Commutation}} = 50 \mu \text{H}$
Waveforms \(L_{\text{Commutation}} = 980 \mu\text{H} \)

Simulation
Compensation for harmonic currents

Annotations
- 1 phase voltage
- 2 mains current
- 3 rectifier current
- 4 converter current

Oscillation
- 883Hz=17th harmonic
Results current \((L_{\text{Commutation}} = 980\mu\text{H}) \)

- Oscillation frequency 883Hz = 17\(^{th}\) harmonic

- Simulation

- Laboratory

- Current THD about 9.5%

- Current THD about 9.3%
Results voltage \(L_{\text{Commutation}} = 980\mu\text{H} \)

- Oscillation frequency 883Hz = 17th harmonic
- Voltage THD 5.97\%
- Voltage THD 6.94\%

without active filtering

with active filter
Waveforms \(L_{\text{Commutation}} = 350\mu \text{H}\)

- **Simulation**
 - Compensation for harmonic currents and reactive power

- **Annotations**
 - 1 phase voltage
 - 2 mains current
 - 3 rectifier current
 - 4 converter current

- **Oscillation**
 - 3183Hz=63rd harmonic

- **Laboratory**
 - Compensation for harmonic currents and reactive power

Annotations
- 1 phase voltage
- 2 mains current
- 3 rectifier current
- 4 converter current

Oscillation
- 3183Hz=63rd harmonic
Results current \(\left(L_{\text{Commutation}} = 350\mu\text{H} \right) \)

- Oscillation frequency 3183Hz=63\(^{rd}\) harmonic

- Simulation

- Laboratory

- Current THD about 7.2%

- Current THD about 6.68%
Results voltage \(L_{\text{Commutation}} = 350\mu\text{H} \)

- Oscillation frequency 3183Hz=63rd harmonic
- Without active filtering
 - Voltage THD 2.83%
- With active filtering
 - Voltage THD 2.21%
Waveforms ($L_{\text{Commutation}} = 50\mu\text{H}$)

Simulation
Compensation for harmonic currents

Annotations
- 1 phase voltage
- 2 mains current
- 3 rectifier current
- 4 converter current

Oscillation
- $3183\text{Hz}=63^{\text{rd}}$ harmonic

Laboratory
Compensation for harmonic currents
Results current ($L_{\text{Commutation}} = 50\mu\text{H}$)

- Oscillation frequency 3183Hz=63$^{\text{rd}}$ harmonic
- Simulation
- Laboratory

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>THD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>+0.00083</td>
</tr>
<tr>
<td>0.14</td>
<td>+0.001154</td>
</tr>
<tr>
<td>0.16</td>
<td>+0.001478</td>
</tr>
<tr>
<td>0.18</td>
<td>+0.001316</td>
</tr>
<tr>
<td>0.20</td>
<td>+0.00164</td>
</tr>
<tr>
<td>0.22</td>
<td>+9.1</td>
</tr>
</tbody>
</table>

- Current THD about 8.2%
- Current THD about 12.5%
Results voltage ($L_{\text{Commutation}} = 50\mu\text{H}$)

- Oscillation frequency 3183Hz = 63rd harmonic

- Without active filtering
 - Voltage THD 2.83%

- With active filtering
 - Voltage THD 2.21%
Diode rectifier with capacitive DC-load

- 5th current harmonic 89%
- Current THD 105%
 (discontinuous current flow)
Waveforms (RC-DC-load)

Simulation
Compensation for harmonic currents

<table>
<thead>
<tr>
<th>Voltage (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.2</td>
</tr>
<tr>
<td>+0.12</td>
</tr>
<tr>
<td>-0.04</td>
</tr>
<tr>
<td>-0.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mains current (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.04</td>
</tr>
<tr>
<td>+0.024</td>
</tr>
<tr>
<td>-0.024</td>
</tr>
<tr>
<td>-0.008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rectifier current (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.045</td>
</tr>
<tr>
<td>+0.027</td>
</tr>
<tr>
<td>+0.009</td>
</tr>
<tr>
<td>-0.009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Converter current (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.045</td>
</tr>
<tr>
<td>+0.027</td>
</tr>
<tr>
<td>+0.009</td>
</tr>
<tr>
<td>-0.009</td>
</tr>
</tbody>
</table>

Laboratory
Compensation for harmonic currents

<table>
<thead>
<tr>
<th>1 line-line voltage (TS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Voltage (TS) 500 V 5 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 mains current (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Mains current (T) 50 A 5 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 rectifier current (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3) Rectifier current (T) 40 A 5 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 converter current (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Converter current (T) 50 A 5 ms</td>
</tr>
</tbody>
</table>

Annotations
1 phase voltage (R)
2 mains current (R)
3 rectifier current (R)
4 converter current (R)
Results current (RC-DC-load)

- Oscillation frequency 883Hz = 17th harmonic

- Simulation

- Laboratory

- Current THD about 22%

- Current THD about 25%
Results voltage (RC-DC-load)

- Oscillation frequency 883Hz = 17th harmonic
- Without active filtering
 - Voltage THD 5.4%
- With active filtering
 - Voltage THD 7.3%
Summary

- **Current improvements**
 - Possibility of compensation for harmonic currents and reactive power
 - Filter is able to improve all types of distorted current shapes

- **Voltage improvements**
 - depending on the current flow through the rectifier
 - continuous current flow: able to improve
 - discontinuous current flow: no guaranty for an improvement
Conclusions

- The major problems must be improved or solved
- Delayed current
 - Faster AD-converter
 - Replacement of the micro controller
 - by DSP
 - by Tricore
 - Current controller with a higher bandwidth
- Reducing the oscillation
 - Passive damping of the oscillating circuit (added resistor)
 - Active damping by modified control algorithm