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Abstract 

Passivity must be enforced on rational macromodels in 
order to ensure a stable time domain simulation. This paper 
investigates procedures for enforcing passivity for 
transmission line models based on the Method of 
Characteristics. Adding a conductive correction term 
externally to the line terminals is shown to be a robust and 
simple procedure for ensuring a passive model. The 
perturbation of the line model behavior is reduced by shaping 
the correction term using a low order rational function.  

Introduction 
The modeling of linear devices and systems by rational 

macromodels has reached considerable interest, due to the 
potential high accuracy of the resulting model. The modeling 
can be done from tabulated data in either the frequency 
domain or the time domain, resulting in a model on state-
space form or pole-residue form that can be easily included in 
most simulation programs.  Although the modeling process is 
fairly straightforward by usage of robust fitting techniques 
such as vector fitting [1], passivity should also be enforced in 
order to ensure a stable simulation. This is usually achieved 
by a postprocessing step where the model parameters are 
perturbed [2],[3],[4]. Techniques are also available for 
passivity checking via algebraic tests [4]. 

This paper focuses on passivity enforcement for 
transmission line models based on the Method of 
Characteristics (MoC). The previous techniques for passivity 
enforcement are not directly applicable to MoC based models 
since the latter makes use of delay terms. For that purpose, an  
algorithm is introduced that adds a rational correction term 
externally to the line terminals (ports). The approach is 
demonstrated for use with the so-called Universal Line Model 
(ULM) [6] as implemented in the PSCAD simulation 
environment [7].  

The Universal Line Model 
In the simulation of electromagnetic transients in power 

systems, the Universal Line Model (ULM) is frequently 
applied. This is a direct formulation of the MoC in phase 
coordinates, without assumption of a real transformation 
matrix. The main strength of this approach is the  ability to 
accurately simulate situations where the propagation function 
has small but important off-diagonal elements. This is 
sometimes the situation in EMC problems such as undesired 
coupling between a power line and telecommunication line. 

Consider a line with ends k and m. In the frequency 
domain, the voltage-current relation at end k can be written  

 2k c k ki= −i Y v i  (1) 

 T
ki mr=i H i  (2) 

where i and r denote incident and reflected wave.  
Matrices H and Yc are respectively the matrices of 

propagation characteristic admittance. They are obtained 
directly from the p.u.l. series impedance matrix Z and shunt 
admittance matrix Y, and the line length l  

 1−=cY Z ZY  (3) 

 −= le ZYH  (4) 

In the ULM [6], the rational fitting for  Yc and H are on 
the form  
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Poles and delays for the fitting of H in (6) are precalculated 
by fitting the modes hi of H. (Nearly equal modes are lumped 
before doing the fitting, thereby reducing the order of the final 
model). 
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Nodal Admittance Matrix And Passivity 
The admittance matrix with respect to the line terminals can 

be calculated directly from the rational approximations for H 
and Yc as follows [8] 

 n
⎡ ⎤= ⎢ ⎥⎣ ⎦
A BY B A  (8) 

where 
 2 2 1( )( )c

−= + −A Y I H I H  (9) 

 2 12 ( )c
−= − −B Y H I H  (10) 

The model is passive if the nodal admittance stamp (8) is 
positive for all frequencies, i.e. [2],[9] 

 (Re{ ( )}) 0 ,neig s s s jω> ∀ =Y  (11) 

An approach for passivity checking based on algebraic 
tests is shown in [10].  

Passivity Enforcement by External Correction Term 
Large passivity violations can occur outside the fitting 

band. Most EMTP-type programs add a small shunt 
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conductance to Y in order to ensure a physical (passive) 
behavior at low frequencies [11], see [12] for a recent 
discussion. With ULM, passivity violations can with short 
lines also occur at high frequencies. This problem is overcome 
by multiplying H with a low-pass-filter [13]. 

One way of removing any remaining passivity violations is 
to add losses by connecting an external model to the line 
terminals. Using the Simplistic Approach in [2, Section VII], 
a correction matrix Dcorr is established incrementally in a 
frequency sweep over the interval(s) containing passivity 
violations. At the first frequency, Dcorr is initialized to zero. At 
each frequency, Re{Yn}+Dcorr is separated into two modal 
decompositions that respectively contain the positive and 
negative eigenvalues.  

 
 1 1 1Re{ }n corr pos neg

− − −+ = = +Y D TΛT TΛ T TΛ T  (12) 

 
Positive eigenvalues are ensured for Re{Yn}+Dcorr at a 

given frequency by adding the negated value of the second 
term in (12) to Dcorr. This procedure ensures that all 
eigenvalues of the combined model are non-negative at all 
frequencies contained in the sweep. No iterations are needed 
since each update of Dcorr leads to higher losses at all 
frequencies. The procedure is illustrated in Fig. 1. 

 

Fig. 1  Calculating conductive correction term 
 

The resulting correction term is a nodal conductance matrix 
that gives an instantaneous coupling between all line 
terminals, see Fig. 2. The correction can be limited in 
bandwidth by multiplying with a suitable band-pass filter. If 
the passivity violations are located between frequencies 
{ω 1,ω 2}, it is proposed to use a correction 
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The two poles in (13) are respectively placed at one decade 
below and above ω 1 and ω 2 to ensure that the imaginary part 
of the band-pass filter is negligible between ω 1 and ω 2. The 
factor 1.01 ensures that the real part of the band-pass filter is 
greater than unity at the boundaries ω 1 and ω 2. For practical 
implementation in a time domain simulation program it may 
be advantageous to expand (13) into a sum of pole-residue 
terms 
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Fig. 2  Rational correction term (two-conductor line) 

Example: Coaxial cable 
As an example is used a homogenous two-conductor 

coaxial cable of 10 km length, buried 1 m below the surface 
of a lossy ground, see Fig. 3. The series impedance Z is 
calculated including skin effects in conductors and earth [13].  

 

Fig. 3  132 kV cable 
 

 CABLE DATA  
Item Property 

Core OD=39 mm , ρ= 3.365E–8 Ω⋅m  
Insulation t=18.25 mm, εr=2.85 
Sheath t=0.22 mm , ρ= 1.718E–8 Ω⋅m 
Jacket t=4.53 mm, εr=2.51 

 
In the fitting process, eight poles are used for the fitting of 

Yc (5) and 12 poles are used for fitting each of the modes of H 
(7). Out-of-band passivity violations at low frequencies are 
avoided by introducing an artificial shunt conductance at low 
frequencies such that a trapped voltage will discharge with a 
one second time constant. Out-of-band passivity violations at 
high frequencies are avoided by multiplying H with a low-
pass filter (10 MHz cut-off frequency) and asymptotic 
passivity is enforced for Yc [13]. 

Fig. 4 shows the rational fitting of Yc using an 8th order 
common pole set with weighting equal to the inverse 
magnitude of the matrix trace. The weighting is seen to ensure 
high relative accuracy at low frequencies where the matrix 
elements are small. 

Fig. 5 shows the rational fitting of H using a 12th order 
approximation for each of the two modes. It is seen that all 
elements are well fitted, including the small element that 
represents the induced sheath voltage.    

Figs 6 and 7 (expanded view) show the resulting 
eigenvalues of Re{Yn}, calculated from the fitted model by 
(8)-(10). Some of the eigenvalues are negative in the 
frequency range 15.3 Hz–575 Hz, thereby making the line 
model non-passive.  

MoC

Correction

MoC

Correction

1.0 m

ρsoil=100 Ω⋅m

1.0 m

ρsoil=100 Ω⋅m

corr =D 0

1 1Re{ ( )}k corr pos negs − −+ → +Y D TΛ T TΛ T
1:corr corr neg
−= −D D TΛ T

for k=1:Ns

end

corr =D 0

1 1Re{ ( )}k corr pos negs − −+ → +Y D TΛ T TΛ T
1:corr corr neg
−= −D D TΛ T

for k=1:Ns

end
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Fig. 4  Rational fitting of Yc (8th order) 

 
Fig. 5  Rational fitting of H (12th order per mode) 

 
Fig. 6  Eigenvalues of Re{Yn}. 
 

A correction term (13) is calculated and added to the four 
line terminals. The result in Fig. 8 shows that the eigenvalues 
are modified to become positive at all frequencies, thereby 
giving a passive model. It is also seen that the eigenvalues are 
unaffected at very low frequencies due to the band pass 
function in (13).  
 

 
Fig. 7  Eigenvalues of Re{Yn}. Expanded view 

 
Fig. 8  Effect of external correction term  on eig(Re{Yn}) 

Time Domain Simulation 
In the following example is used the obtained model in a 

transient simulation, see Fig. 9. The simulation is with the 
PSCAD software [7] with the correction term (14) included 
via a user-defined subroutine [14]. 

 
Fig. 9  Step voltage excitation 
 

Figs 10 and 11 respectively show the simulated voltage at 
the far end core conductor and sheath conductor when the 
cable core conductor is subjected to a step voltage excitation. 
The sheath conductor is grounded at the sending end but is 
open at the far end. The simulated voltage is shown before 
and after adding the external correction term (13). In addition 
is shown the deviation between the two responses. It is seen 
that the effect of the correction term is insignificant. The 
relative impact is higher for the response in Fig. 11 since it is 
nearly two magnitudes smaller than the one in Fig. 10.  

V1 V3
V4

V1 V3
V4
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Fig. 10  Far end core voltage (V3) 

 
Fig. 11  Far end sheath voltage (V4) 

Discussion 
The proposed approach for passivity enforcement is highly 

robust and has been successfully applied to a number of line 
cases, including a six-conductor cable system [13]. This 
method is fail-proof in the sense that it cannot diverge; a 
single sweep will guarantee passivity at the frequency samples 
contained in the sweep. A potential drawback is that the size 
of the perturbation is not minimal, but this should not be a 
problem as long as the needed correction is small, which is 
usually the case of in-band passivity violations. (In-band 
passivity violations generally decrease in size when increasing 
the fitting order.)  An undesired side effect is that causality is 
violated due to the instantaneous coupling between the line 
ends. This coupling is however insignificant when the needed 
correction is small, see for instance Figs 6 and 7.  

The passivity enforcement approach was in this work used 
together with the Universal Line Model, but it is equally well 
applicable to other MoC based models.   

Conclusions 
Passivity enforcement for MOC based transmission line 

models can be achieved by adding a rational correction term 
to the line terminals. The correction term is derived directly 
from the model nodal admittance matrix via a frequency 
sweep, giving a conductance matrix. The bandwidth of the 

model perturbation is reduced by appropriate shaping of the 
correction term by a band pass function. Application to one 
case taken from power systems modeling showed that the 
passivity was achieved with a only a insignificant change to a 
transient response.  

References 
[1] B. Gustavsen, and A. Semlyen, “Rational approximation 

of frequency domain responses by vector fitting”, IEEE 
Trans. Power Delivery, vol. 14, no. 3, pp. 1052-1061, July 
1999. 

[2] B. Gustavsen, and A. Semlyen, ”Enforcing passivity for 
admittance matrices approximated by rational functions”, 
IEEE Trans. Power Systems, vol. 16, no. 1, pp. 97-104, 
Feb. 2001. 

[3] S. Grivet-Talocia, “Passivity enforcement via perturbation 
of Hamiltonian matrices”, IEEE Trans. Circuits and 
Systems–I, vol. 51, no. 9, pp. 1755-1769, Sept. 2004. 

[4] D. Saraswat, R. Achar, and M.S. Nakhla, “A fast 
algorithm and practical considerations for passive 
macromodeling of measured/simulated data”, IEEE Trans. 
Advanced Packaging, vol. 27, no. 1, pp. 57-70, Feb. 2004. 

[6] A. Morched, B. Gustavsen, and M. Tartibi, “A universal 
model for accurate calculation of electromagnetic 
transients on overhead lines and underground cables”, 
IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 1032-
1038, July 1999. 

[7] http://pscad.com/ 
[8] B. Gustavsen, “Validation of frequency dependent 

transmission line models”, IEEE Trans. Power Delivery, 
vol. 20, no. 2, pp. 925-933, April 2005. 

[9] S. Boyd, and L.O. Chua, “On the passivity criterion for 
LTI n-ports”, Circuit Theory and Applications, vol. 10, pp. 
323-333, 1982. 

[10]E. Ghad, C. Chen, M. Nakhla, and R. Achar, “Passivity 
verification in delay-based macromodels of elcectrical 
interconnects”, IEEE Trans. Circuits and Systems – I, vol. 
52, no. 10, pp. 2173-2187, October 2005. 

[11]J.R. Marti, “The problem of frequency dependence in 
transmission line modelling”, PhD Thesis, University of 
British Columbia, Canada, 1981. 

[12]S. Grivet-Talocia, and F. Canavero, “DC-compliant 
macromodels based on the method of characteristics for 
frequency-dependent transmission lines”, in Proc. 
Electronics Systemintegration Technology Conference, 
Dresden, Germany, September 5-7, 2006, pp. 56-61. 

[13]B. Gustavsen, “Passivity enforcement for transmission 
line models based on the method of characteristics”, IEEE 
Trans. Power Delivery, submitted. 

[14]B. Gustavsen, and O. Mo, “Interfacing convolution based 
linear models to an electromagnetic transients program”, 
International Conference on Power System Transients 
(IPST), 2007, submitted. 

172 SPI2007


