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Pole Identification for The Universal
Line Model Based on Trace Fitting

Bjørn Gustavsen, Senior Member, IEEE, and John Nordstrom

Abstract—The universal line model (ULM) is a frequency depen-
dent transmission-line model based on the method of character-
istics in the phase domain. Although the ULM is known to pro-
duce highly accurate models for both overhead lines and under-
ground cables, situations have been encountered where the pole
identification for the propagation function fails. In this paper, we
overcome the problem by basing the pole identification on trace
fitting rather than mode fitting. This is achieved by introducing
delayed basis functions in the vector fitting algorithm, followed
by time-delay refinement and model-order reduction. In situations
where the modes can be fitted without difficulty, the existing ap-
proach using modes obtained by a frequency-dependent transfor-
mation matrix remains the most accurate.

Index Terms—Electromagnetic transients, frequency depen-
dency, transmission-line model, universal line model (ULM),
vector fitting.

NOMENCLATURE

Bold, capital letter Matrix of elements.

Bold, small letter Vector of elements.

Small letter Single element.

I. INTRODUCTION

THE accurate simulation of electromagnetic transients in
power systems requires that overhead line and under-

ground cable models include all frequency-dependent effects.
This has traditionally been accomplished using formulations
based on a constant transformation matrix and frequency-de-
pendent modes [1], [2]. Approximation of the modes with
rational functions and a single time delay leads to recursive
convolutions in the time domain and, thus, highly efficient sim-
ulations [1]. The frequency dependency of the transformation
matrix can be taken into account by an additional convolution
[3], [4], but this works well only for underground cables (as
unstable poles may be needed when applied to overhead lines).
This has led to the development of a new class of models where
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the fitting is accomplished directly in phase coordinates, either
via fitting in the z-domain [5], [6] or the s-domain [7]–[11].

One of the phase-domain models—the universal line model
(ULM) [10], [11]—has been available in two electromagnetic-
transient (EMT) programs since 1998 and 2001, respectively.
This model has proven to be highly accurate for both overhead
lines and underground cables. The key idea is to first decom-
pose the propagation function into modes, each fitted with a set
of poles and a single time delay, followed by a final fitting in
the phase domain with only residues as unknown quantities. By
increasing the fitting order, a model of arbitrary accuracy can be
obtained.

A case where the pole-identification procedure is unable to
obtain a high-quality model is reported, for the first time, in
this paper. In order to overcome this deficiency, we propose
an alternative pole-identification procedure that relies on fitting
the matrix trace rather than the modes. The main contribution
is the implementation of the trace fitting procedure, which re-
quires the inclusion of multiple time delays in the fitting process.
This is achieved by introducing delayed basis functions in the
pole-relocating, vector-fitting (VF) algorithm [12], followed by
time-delay refinement. Finally, a model-order reduction (MOR)
approach proposed in [18] is used to reduce the model size. The
performance of the new pole-identification scheme is demon-
strated by an application to two different cable systems.

II. UNIVERSAL LINE MODEL

A. Method of Characteristics in the Phase Domain

Consider a transmission line with ends denoted and , re-
spectively. The relationship between voltage and current at
line end in the frequency domain is given by

(1)

(2)

where indices and denote the incident and reflected waves,
respectively. The matrices for surge admittance and propa-
gation function for a line of length are obtained from the
series impedance matrix and the shunt admittance
matrix as

(3)

(4)

B. Rational Fitting

In the universal line model (ULM), the poles for are
obtained by fitting the matrix trace (5) [11] using VF, followed
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by a final fitting of the residues and proportional term in
the phase domain (6)

(5)

(6)

It is also remarked that the fitting can be achieved by applying
VF to the columns of [8], [10], providing a private pole set
for each column; the latter gives a more accurate result with a
given order. However, since PSCAD makes use of a nonsparse,
Fortran 77 implementation of VF with fixed array dimensions,
it was decided to calculate the poles by trace fitting in order
to minimize memory requirements. Trace fitting has also been
applied to network equivalent modeling [13].

Poles and delays for the fitting of are obtained by
fitting the modes of

(7)

Modes with nearly equal delays are lumped together before
the fitting is performed. Finally, the residues are calcu-
lated by solving (7) with (known) poles and delays

(8)

In (8), denotes the number of (lumped) modes and is
the number of poles used for fitting the th mode.

III. ACCURACY PROBLEM

In the original ULM formulation [10], the modes of are
obtained via a constant, real transformation matrix. This trans-
formation matrix is evaluated at the highest frequency point
in the band of interest

(9)

The columns of (the complex) are rotated to minimize
the imaginary part in the least-squares sense and the imaginary
parts are discarded. The resulting transformation matrix is
applied to (9) at all frequencies and the offdiagonal ele-
ments are discarded. From each modal component , the as-
sociated propagation component is calculated as

(10)

As the diagonalization by (10) may cause the (diagonal) ele-
ments to contain contributions from more than a single mode,
one would expect that obtaining the modes directly from (9)
with a frequency dependent, complex , would lead to a more
accurate result for (8). Calculated results have verified this
assertion for several cases, and use of a frequency dependent

was, as a consequence, applied to the ULM implementa-
tion in PSCAD [11]. Smooth modes resulted when artificial

eigenvector switchovers were removed; this was achieved by
resorting to a Newton diagonalization technique, which uses
the modal decomposition at a given frequency sample as the
initial value for the next frequency sample [14].

Some situations have been encountered where the modes
cannot be decently fitted, whether they are obtained by a
constant or a frequency dependent . This difficulty can be
explained as follows.

1) With a constant , the modes are linear combinations of
the elements of with constant, real coefficients. Since
the diagonalization is not complete over the full frequency
band, each mode will be composed of a dominant com-
ponent plus “parasitic” components with different delays.
This is shown in (11) for a two-conductor line. When fit-
ting this contaminated mode with a rational function plus
a single delay, the extracted poles are affected by the delay
factor of the parasitic component. In order words, incorrect
poles result due to an incorrect model structure

(11)

2) With a frequency dependent , the modes are linear com-
binations of the elements of with frequency dependent,
complex coefficients. This frequency dependency causes
the poles of the modes to become different from those of

. This is demonstrated in the Appendix for a lumped cir-
cuit.

IV. POLE IDENTIFICATION BASED ON TRACE FITTING

A. Trace Fitting

In order to overcome the difficulties with mode fitting, fitting
the trace of , as is similarly done for in (5), is proposed.
The trace (12) captures all of the essential information of
since it is equal to the sum of the eigenvalues of , [15].
At the same time, is equal to the sum of the diagonal
elements and thereby it contains the poles of

(12)

The problem to be solved is

(13)

Solving (13) requires identification of all poles and delays
simultaneously. Currently, no approach exists that can achieve
this in an efficient and reliable manner; we overcome this diffi-
culty by identifying a common pole set for all delay groups

(14)

The time delays are first extracted by fitting the modes ob-
tained by a real transformation matrix (10), using the “optimal”
delay extraction procedure in [16]. The poles in (14) are subse-
quently identified by a modified version of VF that uses delayed
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Fig. 1. Pseudocode for inclusion of delays in the optimization.

basis functions. With the relaxed normalization in [17], we ob-
tain the following linear LS problem for the pole-identification
step:

(15)
After solving (15), new poles are calculated as

(16)

where is a column of one’s and is a row-vector holding the
residues . This procedure relocates a set of initial poles to
their final positions by repeated usage of (15) and (16). Finally,
the unknown residues for (14) are calculated with known poles
and delays.

B. Time-Delay Refinement

The accuracy of the fitting (14) can be improved by an it-
erative refinement to the time delays. A simple search proce-
dure is used that optimizes the time delays one-by-one, so as to
minimize the rms error in (14) (an overview of the procedure is
shown in Fig. 1). The delay is increased incrementally until the
rms error starts to increase. The step length is then reduced by
half and the search direction is reversed. Unnecessary evalua-
tions are avoided by storing the rms error versus delay in tables.
More advanced search routines, such as Brent’s method, can
also be used, see [16]. Since the delays are refined one-by-one,
it may be necessary to repeat the refinement process a few times
(we used three repetitions in this work).

C. Model-Order Reduction

The use of identical poles for all modes makes the fitting
process more constrained, thus requiring a higher fitting order
compared to the usage of a private pole set for each mode. To
alleviate this problem, we first calculate a high-order common
pole set fitting, from which we select a subset of poles.

Equation (14) leads to a linear problem of the form (17) where
each frequency sample, gives one row (18)

(17)

(18)

In the case of complex poles, the basis functions (columns
of ) that are associated with a complex conjugate pair

are replaced with

(19)
This causes the associated elements in to be real only,

which are and , respectively [12]. Finally, the
problem (17) is converted to real only

(20)

The conditioning of is improved by scaling its columns to
unit length

(21)

where

(22)

MOR is applied to (20), based on the approach in [18]. For the
(scaled) system-matrix , the singular value decomposition is
computed

(23)

By replacing singular values in (23) that are smaller than a
threshold value with zero, a modified system matrix
is obtained. The problem is solved using the back-
slash operator “ ” in Matlab, which invokes QR decomposition
with rank revealing column pivoting [19]. This procedure causes

to possess as many zeros as has zero singular values. The
nonzero elements of define the subset of poles to be retained.

The solution vector is finally scaled back to recover the final
result

(24)

V. EXAMPLE: ARMORED SINGLE-CORE CABLES

A. Cable Geometry

Fig. 2 shows an example of three, armored single-core ca-
bles. Each cable features two metallic sheaths and one layer of
metallic armor. The armor is eliminated from the system of con-
ductors, leading to a nine-conductor system. Details about the
cable geometry are given in Table I.

B. Mode Fitting

The nine modes of propagation were calculated in the fre-
quency range of 1 Hz–1 MHz using a frequency dependent,
complex . It can be seen from the modal velocities in Fig. 3
that there are only three distinct modes at high frequencies. The
modes were lumped accordingly into three modes, and then sub-
jected to rational fitting (7) with refinement of time delays [16].

Fig. 4 shows the fitted modes when using 14 stable poles per
mode. The fitting error is seen to be large for two of the modes
as the mode fitting approach breaks down. The problem occurs
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Fig. 2. Three armored cables. Length: 24 km.

TABLE I
CABLE DATA

Fig. 3. Modal velocities.

because the modes require unstable poles to be accurately fitted.

Fig. 5 shows the same result when the modes are obtained
using a constant, real calculated at 1 MHz. The modes are
now all fitted with a high degree of accuracy.

The poles and delays obtained (via a constant ) were used
as known quantities for the final fitting of . The result in Fig. 6
shows that the deviation curves peak at more than around
100 kHz, which is a much higher error level than that of the
modes (Fig. 5). A somewhat more accurate result was obtained
when using poles and delays obtained via a frequency dependent

, despite the very poor fitting of the modes (Fig. 4).

Fig. 4. Modes ofH obtained via frequency dependent, complex T.

Fig. 5. Modes ofH obtained via constant, real T.

Fig. 6. Fitted H.

C. Trace Fitting

Initial time delays were obtained by mode fitting via a con-
stant , using 40 poles per delay group. This gave a fit with an
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Fig. 7. Fitted trace.

TABLE II
MODAL DELAYS [�S]

Fig. 8. FittedH, without delay refinement, after MOR.

rms error smaller than , for all modes. With these delays
as known quantities, trace fitting was applied using 40 poles per
delay group, with iterative delay refinement and MOR, and dis-
carding singular values smaller than . Use of
MOR resulted in the order being reduced from to
88 poles. Fig. 7 shows the fitting result for the trace. It is seen
that delay refinement greatly improves the accuracy, and that the
impact of MOR on accuracy is insignificant. The change to the
delays is shown in Table II.

Figs. 8 and 9 show the final fitting for , without and with
delay refinement, respectively—again, delay refinement leads
to a great improvement in accuracy. From this result, one can
conclude that the delays obtained from mode fitting are not op-
timal with respect to the final fitting of .

Fig. 10 compares the fitting accuracy for in terms of rms
error, for different approaches and fitting orders. The lumped

Fig. 9. FittedH, with delay refinement, after MOR.

Fig. 10. RMS error versus fitting order.

modes were each fitted using orders 5, 10, , 40 poles. Since
there are three (lumped) modes, the order with mode fitting is
three times these values, as can be observed in Fig. 10. The trace
is fitted using the same orders, followed by MOR. It can be seen
that the usage of trace fitting yields highly accurate results for
sufficiently high orders, while mode fitting is not capable of pro-
ducing rms errors smaller than . The result is particularly
bad when using a constant, real .

D. Time-Domain Results

The obtained rational model via trace fitting is fully compat-
ible with the time-domain ULM implementation in PSCAD. In
Fig. 11, an example where the cable system is subjected to a step
voltage excitation on a core conductor is shown. The far-end
voltage on the same core conductor is to be calculated.

The trace was fitted using poles followed by order
reduction. This resulted in a model with a total of 69 poles, along
with an rms error of about , see Fig. 10. For validation
purposes, the transfer function was calculated in the fre-
quency domain via the exact PI equivalent of the cable. A highly
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Fig. 11. Step voltage excitation.

Fig. 12. PSCAD simulation of step response.

Fig. 13. PSCAD simulation of step response. Expanded view.

accurate, rational fitting of this frequency response was calcu-
lated by VF, and the rational model was included in PSCAD by
convolution with a user-written subroutine [20].

Fig. 12 compares the simulated step voltage response by the
ULM and by the rational model. In addition, the deviation by
the two responses, multiplied by a factor of 10, is shown. The
deviation is very small, except for a high-frequency transient
( 1 MHz), which results because the rational model is fitted
only up to 1 MHz, leading to a Gibbs type of oscillation in the
response, see Fig. 13.

Fig. 14. Cable configuration. Cable length: 10 km.

TABLE III
CABLE DATA

Fig. 15. Propagation functionH.

VI. EXAMPLE: SINGLE-CORE COAXIAL CABLES

The current version of the ULM, as implemented in EMTP-
type programs, has, in general, been highly successful, where
fitting problems such as that reported in Section V are more of an
exception. It is therefore useful to investigate the performance
of the trace fitting approach when applied to more typical ex-
amples.

Fig. 14 shows a system of three, 145-kV single-core coaxial
cables (see data in Table III). The propagation function for this
six-conductor line is shown in Fig. 15. For such cable systems,
it is sometimes necessary to obtain a very accurate fit in order
to simulate the induced sheath overvoltages (small elements in
Fig. 15). This may require deviation levels smaller than .

The six modes were lumped into four modes, which were
each subjected to rational fitting for delay identification, where
the same fitting order was used for all four modes. Fig. 16
shows the rms error for the fitted results of , when using
either the trace fitting approach or the existing mode fitting
techniques. The results are shown for different orders when
fitting the modes: 5, 10, , 20. It can be seen that with mode
fitting, using a frequency-dependent complex leads to a
substantially better result than with the use of a constant, real
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Fig. 16. RMS error versus fitting order.

. (This was also the reason for introducing the complex
[11]). Using trace fitting provides substantially higher rms error
for a given order. For instance, a 72nd-order approximation is
needed for an error level of , while only a 40th-order
fitting is needed with modal fitting and a complex .

VII. DISCUSSION

The trace fitting approach is applicable to any overhead line
and underground cable, since it does not require that the modes
of be fitted (thereby avoiding the problem of nonfittable
modes and mixed modes). On the other hand, trace fitting leads,
in most situations, to a less accurate result than mode fitting,
and should therefore only be used when mode fitting fails. The
decreased accuracy with trace fitting is not an intrinsic property,
but rather a consequence of the implemented fitting approach.
Delayed basis functions (partial fractions) are introduced in
VF, leading to fitting with a common pole set for all of the
delay groups. A more accurate result would be achieved if
it was possible to conduct the fitting using a private pole set
for each delay group. This was partly achieved in this work
using “overfitting,” followed by MOR. This approach obtains a
private pole set for the delay groups by picking a subset of the
poles. However, a direct computation of the private pole sets
would lead to a more accurate result.

In the example in Section VI with three SC cables, mode fit-
ting gave a substantially more accurate result for the fitting of
than trace fitting. In this case, the delay refinement in the trace
fitting approach barely changed the delays at all. On the other
hand, in the example in Section V with three armored cables,
the delay refinement greatly improved the accuracy, which led
the trace fitting approach to give a more accurate fit for . Thus,
the use of mode fitting does not guarantee the production of the
most suitable time delays for the fitting of .

VIII. CONCLUSION

1) The existing version of the ULM identifies the poles of
the propagation function via mode fitting, using either a
constant or a frequency-dependent transformation matrix.
Certain cable systems exist where these approaches fail.

Fig. 17. Two-port network.

Fig. 18. Elements of Y.

2) Pole identification via trace fitting is introduced as an al-
ternative approach. The trace fitting is achieved by intro-
ducing delayed basis functions in the vector fitting algo-
rithm, followed by delay refinement and MOR. This ap-
proach is shown to work well in an example where mode
fitting fails to give an acceptable result.

3) Trace fitting should not replace mode fitting as the de-
fault approach, since mode fitting using a frequency de-
pendent, complex transformation matrix will, in most situ-
ations, lead to a more accurate model.

APPENDIX

POLE IDENTIFICATION

The following demonstrates that modes obtained via a fre-
quency-dependent transformation matrix will not necessarily
produce the correct poles. This example consists of the terminal
admittance of a two-port network (see Fig. 17). The fre-
quency behavior of is shown in Fig. 18. The poles are iden-
tified by VF using the following approaches:

1) fitting all matrix elements of simultaneously;
2) fitting matrix trace;
3) fitting modes obtained by a real , calculated at 1 kHz;
4) fitting modes obtained by a frequency dependent .
Fig. 19 shows the rms error for the final fitting of with

a pole-residue model of the form (6). It can be seen that the
first three approaches allow to be fitted to machine precision,
by using only three poles. With mode fitting and a frequency
dependent , a slightly different pole set is extracted, and so, a
less accurate fitting of results. It is remarked that the nature of
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Fig. 19. RMS error of fitted Y.

the fitting problem is different from that reported for the cable
system. In the latter case, a very accurate fit could be obtained if
unstable poles were allowed, whereas the use of unstable poles
does not improve the result in Fig. 19.
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