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Multiport Frequency-Dependent Network
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Abstract—This paper presents a multiport implementation of
the time-domain–vector-fitting algorithm (TD-VF) for achieving
a common-pole rational model approximation from simulated
time-domain responses. Similar to the frequency-domain counter-
part of the algorithm, a fast realization of TD-VF is achieved based
on QR-factorization with consideration of sparsity. The compu-
tational speed is further increased by an adaptive downsampling
procedure which removes rows from the system matrices. The
required model order is reduced by low-pass filtering the input
responses, giving a model that is essentially free of spurious
Gibbs-like oscillations. The resulting model is directly compat-
ible with Electromagnetic Transients Program-type simulation
programs. The multiport TD-VF is applied for the calculation
of a frequency-dependent network equivalent (FDNE) of two
subnetworks: a 24-kV distribution system and a 145-kV regional
transmission system. We show that the procedure offers ad-
vantages by achieving faster simulations and reduced memory
requirements. In addition, the procedure often enables the use of a
shorter time-step length than with the detailed subnetwork repre-
sentation, thereby achieving further reductions in computational
time.

Index Terms—Digital filtering, finite impulse response (FIR),
frequency-dependent network equivalent (FDNE), macromodel,
multiport formulation, QR factorization, rational approximation,
time-domain vector fitting.

I. INTRODUCTION

T HE simulation of electromagnetic transients in electric
power systems [1] often requires modeling large portions

of the system in detail. This is typically the case when studying
switching and fault transients as the relatively low-frequency
content permits the transients to penetrate very far in the system
during the event. At the same time, the need for capturing the
high-frequency contents of the waveform may dictate the use of
a small simulation time-step length. The combination of a small
time step and a large system model often places tough require-
ments on the computer resources in terms of central-processing
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unit (CPU) time and memory requirements, in particular, if the
system includes many overhead lines and underground cables.

One way of reducing the computational burden is by re-
placing parts of the system with a computationally efficient
model. These models can be formulated as frequency-de-
pendent black-box terminal equivalents based on rational
functions, also known as frequency-dependent network equiva-
lents (FDNEs) [2]–[10]. These models can be easily interfaced
with Electromagnetic Transients Program (EMTP)-type simu-
lation platforms via a lumped circuit equivalent [2], [3] or by
recursive convolution [11], [12].

FDNEs have traditionally been established in the frequency
domain using an admittance formulation. Curve-fitting tech-
niques based on weighted polynomials [13], [14] or pole reloca-
tion (vector fitting) [15] are applied for fitting the rational model
to the admittance over a given frequency band. The extracted
model is subjected to perturbation [16], [17] in order to ensure
passivity of the model and, thus, stable simulation.

With some EMTP-type circuit simulators, the calculation of
the admittance frequency-domain data is not straightforward
and so it becomes a natural choice to base the FDNE identi-
fication on simulated time-domain responses. This has tradi-
tionally been achieved by means of the ARMA model [5]. It
has, however, been shown [18] that the time-domain counterpart
of vector fitting (TD-VF) [19] offers several advantages over
ARMA by being more robust and accurate, and because stable
poles can be guaranteed.

In this paper, we show a practical procedure for adopting
TD-VF to FDNE modeling and simulation. A filtering approach
is first applied to the input data (time-domain responses) to re-
duce the required model order and for avoiding spurious high-
frequency oscillations in the model’s responses. A highly effi-
cient (sparse) multiport formulation of TD-VF is implemented
for calculating a rational model with common poles, including
a thresholding approach for reducing the number of rows in the
system matrices. The modeling procedure is demonstrated for
two application examples: 1) a distribution system and 2) a re-
gional transmission system. The inclusion of embedded sources
in the model is also shown.

II. PRELIMINARIES

A. Frequency-Dependent Network Equivalent (FDNE)

The objective is to represent parts (subnetworks) of a com-
plex power system with a low-order model with respect to a
set of terminals. We define input variables (voltages

0885-8977/$31.00 © 2012 IEEE
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or currents) and output variables (currents or voltages)
with being the number of ports. In this paper,
we shall assume that the subnetwork is a linear time-invariant
system (LTI).

The subnetwork is to be replaced with an equivalent mathe-
matical representation that should reproduce as closely as pos-
sible the terminal behavior of the original network. Mathemati-
cally, the relation between inputs and outputs of this FDNE can
be expressed in the time domain as a convolution

(1)

where is the excitation at the th terminal, is the
output response at the th terminal due to excitation , and

is the impulse response of the element .
Analogously, (1) can be brought in the frequency domain by

(2), being the Laplace variable and being the
transfer function impulse response

(2)

B. FDNE Representation by Rational Function

The FDNE will be represented by the multiport rational func-
tion (3) with common poles and order . The modeling
process amounts to identifying the poles and residue ma-
trices .

(3)

In this paper, we will assume an admittance formulation
(4) that relates voltage excitations to current responses

(4)

C. Extraction of FDNE From Time-Domain Data

The identification of (3) in this paper is performed in the time
domain (1) with the data (input and output responses) computed
using a circuit simulator. An excitation (voltage) is ap-
plied to the external terminals, while observing the
output responses (current) at the same terminals. In this
manner, a matrix of responses is obtained as well
as a matrix of excitations since, in practice, these
excitations could be different for each output response.

The data are used as input for the TD-VF algorithm [19], al-
lowing to identify the poles and residues of the rational function
(3) and, hence, the determination of the FDNE.

D. Embedded Sources

The FDNE procedure can also cover situations with sta-
tionary sinusoidal sources embedded in the subnetwork. This
way, the presence of generators can, as a first approximation, be
taken into account. For instance, by representing synchronous

Fig. 1. Current sources � for the Norton equivalent.

generators by a fixed voltage source at fixed frequency
behind an impedance (Thevenin equivalent), a Norton-type
FDNE equivalent can be established as follows.

1) The current responses with respect to the external terminals
are obtained with the (embedded) voltage sources shorted.
These responses are used for obtaining the rational model
(3) via TD-VF and, hence, the admittance of the
FDNE.

2) Using the circuit simulator and the detailed subnetwork
representation, the open-circuit terminal voltages are
obtained with the embedded sources active.

3) In the FDNE model, the embedded sources are represented
by current sources from ground to the external ter-
minals, see Fig. 1. These sources are obtained by

(5)

E. Interfacing FDNE With the Circuit Simulator

The admittance representation (3) can be interfaced with
EMTP-type programs using a lumped circuit representation [2]
or by convolution [11] via a companion model (Norton equiv-
alent). In this paper, we make use of the convolution approach
as implemented in the PSCAD/EMTDC circuit simulator by a
user-defined component [12].

III. TIME-DOMAIN VECTOR FITTING

A. Scalar Formulation

We consider a scalar LTI system in which the excitation
and output response are given, with being the
time-domain samples. The objective is to identify poles
and residues of the rational function (3).

The original formulation of the VF algorithm in the frequency
domain [15] enables writing the relation (6) between input
and output , where is the weight function, is the
order, and are unknowns, and are a set of
initial poles

(6)

Applying the inverse Laplace transform to each term of (6)
and successively discretizing the obtained convolution integral
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and simplifying notation [19], [18] gives the time-domain re-
lation (7) where terms and are dependent on the
numerical integration method employed in the discretization

(7)

Expression (7) is written for each input dataset point
in the time domain, with being the time-step length. The

resulting overdetermined linear system is solved in the least-
squares (LS) sense and an improved poles set is computed
from the solution (7) [18], [19]. Only the set of the un-
knowns is used for computing the new set of poles . This
pole relocating procedure usually converges in a few iterations
to the final pole set of the rational function (3), .

The residues are finally computed by solving another
linear LS system

(8)

B. Numerical Integration

The TD-VF expression (7) results from time-domain dis-
cretization of the continuous relation (6). Here, and
are expressed recursively according to the adopted numerical
integration scheme. With trapezoidal integration, the expression
becomes (9) [18]. (We only show since has the
same form.)

(9)

C. Multiport Formulation

In the multiport case, the matrix of output responses
is stacked into a column , with

and being the number of responses.
Similarly, the set of excitations is stacked into a column of re-
sponses . Equation (7) is applied to each pair

, giving the sparse linear system (10), see Appendix A.
All unknowns and of (7) are collected into ar-
rays and , respectively. In order to have a common set
of poles in the rational function (3), the array is the same for
all responses

. . .
...

... ...

(10)

All blocks and in (10) are matrices (associ-
ated with the th pair of responses) of which the th line is
formed by the row array and

, respectively.

Finally, the residues are calculated by independently solving
(8) for all pairs of responses.

D. Sparse Implementation

The system (10) is solved for the only useful unknown by
taking advantage of its sparsity [20], [21]. A factorization QR
of each block (11) is first computed (12)

(11)

(12)

From each factorization (12), the last columns of

and the right bottom square block of are used for
building a new system matrix and corresponding right-hand
side (13). We refer to [20] and [21] for further details. This
new system is solved with respect to the unknown (which is
used for computing the new poles)

...
... (13)

The solution of (13) requires much less CPU time than that
of (10) since the dimension of the system matrix has been
reduced, from to , assuming
a constant number of samples for each time series, with
generally being much greater than . Column scaling is applied
for solving (13), similarly as in [22].

E. Adaptive Sampling

The number of rows in each (11) is directly proportional
to the number of samples in the time series. In order to expedite
the QR factorization (12) and the subsequent solving (13), we
remove rows from while retaining their essential informa-
tion. (Note, however, that all samples are required to build each

from and (11) according to (9), before the dele-
tion process can be started).

The removal of rows from is based on a simple “adap-
tive sampling” rule applied to the original th response .
With a given relative threshold , all rows of the matrix
associated with the samples are removed that satisfy
the condition (14). This equation defines that a sample
is redundant if it differs from the linear interpolation value be-
tween samples and by less than a pre-
defined value. The condition (14) is applied sequentially over
all samples in several iterations before reaching the final result.
Typically, 5–10 iterations are used in this paper

(14)

We remark that condition (14) is used when all samples
are equidistant in time (first iteration). Subsequent iterations
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Fig. 2. Ideal low-pass filter in the normalized digital frequency domain.

Fig. 3. Impulse response � of an ideal low-pass filter.

use a modified version of (14) which takes into account the
nonequidistant sampling.

IV. DIGITAL FILTERING

The dataset of responses is often characterized by
very fast variations and a general nonsmooth behavior. The fast
variations are typically associated with wavefronts in systems
containing overhead lines and cables. These responses can be
very difficult to fit as they generally require very high fitting
orders. In order to reduce the high-frequency content and, thus,
the required model order, we preprocess the original responses
by a low-pass digital filter.

A. Ideal Filter

The ideal low-pass filter can be characterized in the “digital”
frequency domain by the transfer function (Fig. 2) and in the
discrete time domain (Fig. 3) by the impulse sequence (15),
where is an integer. The parameter
defines the digital frequency (which has been normalized with
respect to the sampling frequency ) while defines
the filter cutoff frequency

(15)

B. Digital FIR Filtering

The ideal low-pass filter is not realizable as a digital filter
since its impulse response (15) has infinite time duration. This
problem can be alleviated by applying an approximation by
a filter response of finite duration, so-called finite impulse re-
sponse (FIR) filters [23].

C. Practical Implementation

We use the truncated and translated th-order impulse re-
sponse (16) with coefficients, , and

Fig. 4. Selection of the FIR coefficients.

an even number. Note that causality is ensured in (16) be-
cause of the delay

(16)

In order to avoid oscillations in the filtered response, we se-
lect coefficients from the impulse response (16) that cover
only the main lobe of the “ ” function (15), see Fig. 4.
Thus, the filter order becomes given by (17) where the “ceil”
function returns the upper closest integer. By computing
(15) for , we obtain the coefficients of the
FIR (16)

(17)

D. Filtering and Removal of Delay Effects

The application of the digital filter (16) to the th response
data sequence generates the output filtered response

by discrete convolution

(18)

At the end, we eliminate a posteriori the delay introduced by
the digital filter by removing the fist samples of .

E. Cutoff Frequency and Implications for Initial Pole
Specification

The normalized cutoff frequency is selected depending on
the specific application. In general, usage of a small gives a
reduced high-frequency content of the response, often allowing
successful application of TD-VF with fewer poles. The tradeoff
is reduced information at high frequencies.

The choice of has a direct impact on the specification of
the initial poles of the TD-VF. These should be assumed
linearly spaced in the interval (19), where is the observation
window length of the original time-domain samples

(19)
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Fig. 5. Three-phase distributed system (distances in kilometers). The enclosed
part is replaced with an FDNE.

Fig. 6. Geometry of the overhead lines for the power system of Fig. 5.

Fig. 7. Cable configuration for the power system of Fig. 5.

TABLE I
CABLE DATA

F. Windowing of the FIR Impulse Response

In practice, the first and last filter coefficients are not perfectly
equal to zero, in particular, in cases with low filter orders. In
these situations, one can still obtain zero start and end values
by multiplying with an appropriate window function (e.g.,
the Hanning window [23]).

V. EXAMPLE: MV DISTRIBUTION SYSTEM

A. FDNE Modeling

We consider the three-phase 24-kV rural distribution system
described in [3], see Fig. 5. The system is composed of a set
of overhead lines and underground cables. The electrical loads
are ignored. Each line section consists of a flat untransposed
overhead line without ground wires, while each cable section
consists of three single core coaxial cables. All transmission
lines and cables have the same geometry, see Figs. 6 and 7 and
Table I. The objective is to calculate an FDNE model of the
subnetwork indicated by the dashed line.

The behavior of the subnetwork is characterized in the time
domain using the trapezoidal-based PSCAD circuit solver. A

Fig. 8. Fitting model to data. Comparison between the original current response
and the simulated model for the matrix element (1,1).

unit step voltage source is applied successively to the phases
one by one with the other phases grounded. The applied volt-
ages and the resulting current responses are recorded. We use a
time step s and a window length of 5 ms (25 000
samples). In order to reduce the required model order, the re-
sulting matrix of current responses is postprocessed using the
digital filter with normalized cutoff frequency . The
resulting matrix of responses is stacked by its columns in an
array of responses that is subjected to the multiport TD-VF al-
gorithm described in Section III-C. (The symmetry permits us
to use only the lower triangle of the matrix of current responses,
thereby saving computation time.) We use a fitting order
40 and a relative adaptive sampling threshold .

Fig. 8 compares element (1,1) of the input data with that of the
filtered model response, demonstrating a highly accurate fitting
result. A similar result is achieved for the other elements as well.

B. Simulation of the Capacitor Bank Energization

The FDNE is interfaced to PSCAD by the user-defined com-
ponent in [12]. We now simulate the effect of energizing the
capacitor bank in Fig. 5 when closing the circuit breaker si-
multaneously in all phases at 0. The simulation is run
twice: 1) using the detailed circuit of Fig. 5 with all cables
and overhead lines represented by frequency-dependent trav-
eling-wave models and 2) with the subnetwork replaced by the
FDNE model. In both simulations, a time step s is
used.

Figs. 9 and 10 (expanded view) show the current flowing
through the phase . It can be seen that both simulation ap-
proaches give about the same result. Similar results are achieved
for the current in the other phases.

Use of the FDNE model reduces the CPU time of the simu-
lation time from 71.6 to 13.6 s (i.e., giving a speed gain of 5.3),
see Table II.

The FDNE is applicable with alternative time-step lengths
provided that they are at least as long as the one used for the
identification. Fig. 11 compares the simulated result for time-
step lengths , and , where is the time step used
for the FDNE model extraction. It can be seen that the simulated
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Fig. 9. Simulated current in phase �. A comparison between the PSCAD sim-
ulation result of the detailed network (Fig. 5) and the same network with FDNE.

Fig. 10. Simulated current in phase �. Extended view of Fig. 9.

TABLE II
SIMULATIONS: CPU TIME RESULTS (IN SECONDS)

result remains essentially unchanged, although the trapezoidal
integration leads to some inevitable loss of accuracy.

C. Adaptive Sampling: CPU Time Results

We will now show the benefit of the adaptive sampling
method in Section III-E that is used in the pole identification
step. We use the same example as before but extend the time
record from 5 to 10 ms (50 000 samples).

The dimension of each response block to be subjected to QR
factorization (12) is 50 000 81, with all samples considered.
Table III shows the reduction in matrix rows (expressed by the
number of kept rows) as a function of the threshold value used
in the sampling process, and the resulting CPU time required
by the subsequent QR factorization. In the previous sections,
we used a , giving a 94% savings in CPU time.

Fig. 11. Simulated current in phase �. Simulation for the network of Fig. 5 with
the FDNE by using alternative time-step lengths.

TABLE III
TIMING QR FACTORIZATION (SINGLE RESPONSE BLOCK)

Adaptive sampling is applied only for the QR factorizations
in the pole estimation step. In the residues computation step,
we prefer using all samples since the computational cost is rel-
atively small.

D. Numerical Filtering

In order to better appreciate the effect of the numerical
filtering (Section IV), we modify the network in Fig. 5 by
removing the 2-km overhead line between the bus and the
cable. This greatly increases the front steepness of the current
response. We repeat the generation of the starting data with the
circuit solver using a time step s and a window
length of 3 ms (30 000 samples).

Two FDNE models are constructed: one using the original
starting data and the other one using the filtered starting data
with a low-pass filter having a normalized cutoff frequency
0.05. In the first case, we use a fitting order 200, whereas
in the second case, we use 140.

Fig. 12 shows the simulated current flowing into phase of
the cable when energizing the capacitor bank at 0 ms. The
result is shown for three different simulations of the current:
simulation using the detailed network, using the FDNE model
with the filter, and using the FDNE model without the filter. It
can be seen that the filtering approach removes the spurious os-
cillations associated with the steep wavefronts of the response.

A further advantage of using the filter is that we can achieve
models with a lower order, thereby reducing the complexity of
the FDNE equivalent and, thus, the simulation time.
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Fig. 12. Capacitor bank energization: simulated current in phase �.

Fig. 13. Regional transmission network (distances in kilometers).

VI. EXAMPLE: REGIONAL TRANSMISSION SYSTEM

A. Power System

We now demonstrate the applicability of the FDNE modeling
approach to a highly complex 145-kV regional transmission
system (see Fig. 13). The objective is to calculate the FDNE
equivalent of the entire network seen from bus .

B. Computation of the FDNE

The system in Fig. 13 is modeled in PSCAD using a fre-
quency-dependent traveling-wave model [24] for all lines and
underground cables. The 3 3 matrix of current responses is ob-
tained by applying step voltages to bus with a time-step length

s and a window length of 20 ms. The obtained
current responses (admittance) are processed using the low-pass
filter with a normalized cutoff frequency 0.005. The re-
sulting responses are subjected to TD-VF with a fitting order

140 and 20-pole relocating iterations, giving a common-
pole model (3). In the pole identification step, the adaptive sam-
pling approach is applied with a relative threshold

. Finally, the model is subjected to passivity enforcement by
residue perturbation [25].

Fig. 14. Fitting model to data (with the filter approach). Comparison between
the original current response and the simulated model for the matrix element
(1,1).

Fig. 15. Expanded view of Fig. 14.

Fig. 16. Unit step voltage excitation.

The obtained model is quite accurate for all matrix elements.
Fig. 14 shows the result for element (1,1). The expanded view
in Fig. 15 shows the smoothing effect of the low-pass filter.

C. Voltage Simulation

Using the FDNE, we simulate the voltage response on phase
when applying a unit step voltage on phase with phases

and open (see Fig. 16).
Fig. 17 compares the voltage on phase obtained by the

FDNE with that of the detailed PSCAD model. It can be seen
that a quite accurate result has been obtained.
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Fig. 17. Simulated voltage in phase �. Comparison between simulations using
FDNE and the detailed PSCAD circuit.

Fig. 18. Simulated voltage in phase �. Comparison between simulations using
FDNE (plus current sources) and detailed PSCAD circuit.

TABLE IV
SIMULATIONS: CPU TIME RESULTS (IN SECONDS)

D. Embedded Sources

We next demonstrate the handling of embedded sources. A
50-Hz three-phase 145-kV voltage source is connected to the
internal bus B in Fig. 13. This source is handled by the proce-
dure in Section II-D where the FDNE is modified and current
sources are introduced. Fig. 18 shows a simulation result when
the subsystem is operating in islanding mode. A ground fault
occurs in phase at voltage maximum ( 85 ms). The plot
compares the voltage on phase obtained by the FDNE with
that by the detailed PSCAD model. Clearly, a highly accurate
result is achieved using the FDNE approach.

E. CPU Time Results

Similarly as in the previous example, usage of the FDNE ap-
proach leads to substantial savings in computation time when

Fig. 19. Fitting model to data (without filter). Matrix element (1,1).

Fig. 20. Simulated voltage in phase �. Comparison between simulations using
FDNE and detailed PSCAD circuit.

performing a transient simulation. Table IV shows a speed gain
of 7.5 when conducting the voltage simulation in Section VI-C.

F. Results Without the Usage of the Filter

The usage of filtering not only avoids the occurrence of spu-
rious oscillations; it is sometimes essential for obtaining a useful
model.

Fig. 19 shows the result for element (1,1) of the matrix of
current responses when the fitting is done without usage of the
filtering. ( 250 poles were used in the fitting process). It
can be seen that accuracy is substantially lower compared to the
result when using filtering, see Fig. 14. The accuracy did not
substantially improve with alternative fitting orders.

The reduced accuracy can be detrimental in situations with
high impedance terminations since error magnification effects
can occur [22]. This is demonstrated in Fig. 20 when simulating
the voltage response at phase due to a step voltage excitation
on phase with phases and open. It can be seen that large
errors develop with time. Therefore, the high accuracy achiev-
able with the proposed TD-VF implementation is an essential
feature.
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VII. DISCUSSION

A. Time-Step Length

In the two examples of the paper, a time step of s
is used. This choice is based on the restriction that the time-step
length with the detailed PSCAD model must be smaller than
the smallest transmission-line traveling time (112-m overhead
line in Example #1, 300-m cable in Example #2). Using a time
step longer than the shortest travel time can lead to inaccurate
results and even instabilities. This restriction does not exist with
the FDNE model. It was shown in Section V-B that the time-
step length could be increased from 0.2 to 2 s with only a
small change to the overall waveforms. Hence, large savings in
computation time are possible compared to the detailed PSCAD
simulation model.

B. Memory Requirements

In addition to savings in computation time, the FDNE ap-
proach can also lead to savings in memory requirements. For
instance, in the second example, the total length of the over-
head lines is 615.4 km. With an assumed propagation velocity
of 300 m/ s, the traveling-wave buffers (forward and backward
waves) will with a time-step length of 0.2 s contain about
20 500 cells per phase (i.e., a total of 61 500 cells). For com-
parison, the storage requirement is with the FDNE model dom-
inated by the matrix of coefficients by which the state vector is
multiplied [12]. With an order of 140 and 3 phases,
this amounts to about 1260 cells. Thus, a reduction in
storage by a factor of about 48 is achieved.

C. Handling of Unstable Poles in TD-VF

In this paper, the occurrence of unstable poles during the
TD-VF iterations is handled by flipping any unstable pole into
the left half plane, similar to the frequency-domain counterpart
of VF [15]. However, we have observed with TD-VF that the
pole flipping procedure may, in some rare cases, fail to produce
an acceptable model. In those situations, an effective remedy
is to disable the pole flipping. The computed model then has
the restriction that it cannot be applied in simulations for a time

longer than the one used in the fitting process . This
implies that the simulation cannot be initialized by ramping up
the sources in a lengthy simulation . The latter
problem is not an issue with Electromagnetic Transients Pro-
gram (EMTP) simulators that can initialize directly from a fre-
quency-domain steady-state solution.

VIII. CONCLUSION

In this paper, we have presented an implementation of the
TD-VF algorithm for the purpose of FDNE modeling of com-
plex power systems from time-domain responses as follows.

1) The TD-VF algorithm is extended to multiport systems,
giving a common-pole model based on poles and residue
matrices.

2) A fast solution of the pole identification step is achieved by
utilizing the special sparsity pattern of the system matrix.

3) An adaptive sampling approach is applied in order to re-
duce the number of rows in the system matrices during

pole identification. This greatly reduces the computation
time for the FDNE model.

4) Filtering the time-domain input data before applying
TD-VF is very useful, both reducing the required model
order and avoiding spurious oscillations in the result; for
that purpose, we apply a digital, FIR low-pass filter.

5) The extracted FDNE model is interfaced to PSCAD using
recursive convolution. Application to a 24-kV distribu-
tion system and a 145-kV regional transmission system
demonstrates the ability of the FDNE modeling approach
to achieve highly accurate results.

6) The application of FDNE can give substantial reductions
in simulation CPU times. For the two cases in this study,
we obtained a speed gain by a factor of 5.3 and 7.5, respec-
tively. Further savings can be achieved in situations where
the subnetwork contains short lines as the FDNE can be ap-
plied with longer time-step lengths than the detailed model.

7) Usage of FDNE can lead to large savings in memory in sit-
uations where the subnetwork contains many transmission
lines so that their total travel time is much larger than the
simulation time-step length.

APPENDIX

A. Derivation of Multiport Formulation

Let us start with expression (A1), obtained by applying (7) to
the th response evaluated for the sample at time . The
unknowns are common for all responses

(A1)

Collecting all samples into the array
, all unknowns and into ar-

rays and , respectively, and finally defining matrices
and

...
...

... (A2)

...
... (A3)

we achieve for , the following compact expression:

(A4)

Finally, it is straightforward to obtain the linear system (10),
writing (A4) for all responses .

Here, we have considered, for the simplicity of notation, the
same number of samples for each response, but this proce-
dure is applicable with an arbitrary number of samples.
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