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Abstract 

Residue perturbation (RP) is often used a means for 
enforcing passivity of rational models. One RP version 
combines a least squares problem with a constraints part and 
solves via Quadratic Programming (QP). A major difficulty is 
that commonly available QP solvers cannot utilize the 
problem sparsity, leading to lengthy computations. This paper 
proposes to take the eigenvalues of the residue matrices as 
free variables. This leads to a more compact problem and thus 
a fast computation (FRP). The resulting model error is found 
to be much smaller than when perturbing only the diagonal 
elements of the residue matrices. It is also shown how to 
combine the residue matrix eigenvalue perturbation with the 
recently developed modal perturbation approach (MP), 
leading to a fast version (FMP). The FMP/MP approaches 
have the additional advantage of retaining the relative 
accuracy of the admittance matrix eigenvalues.  

Introduction 
One major problem with the rational modeling of devices 

and systems from frequency domain data is that the obtained 
model is often non-passive. This can lead to unstable 
simulation results when the model can interact with the 
adjacent network over its ports. 

In [1] was introduced the idea of enforcing passivity by 
residue perturbation (RP). A linearized relation was calculated 
between residues and a passivity criterion that is related to the 
eigenvalues of the real part of the nodal admittance matrix.  
This relation was used as a constraint in a least squares 
problem that minimizes the change to the model admittance 
matrix, Y. The resulting problem was solved using Quadratic 
Programming (QP). Similar ideas were adopted in [2]. Usage 
of an energy-based cost function has also been proposed, with 
constraints coming from the Hamiltonian matrix [3]. It has 
also been proposed [4] to combine the energy-based cost 
function with the constraint in [1].  

In [4], a modal cost function was introduced in the LS 
problem of RP. This allows to use inverse eigenvalue 
weighting in the LS problem, thereby preventing that the 
smallest eigenvalues of Y become corrupted by the 
perturbation. It was shown in [5] that retaining the relative 
accuracy of the eigenvalues (modes) can be crucial  when the 
model is to be applied in with arbitrary terminal conditions.  

In the case of large models (many ports, high order), the 
RP/MP approaches are demanding in computation time and 
memory requirements since the commonly available QP 
solvers cannot utilize sparsity. It has therefore been proposed 
to reduce the number of free variables by perturbing only a 
few residue matrices [1] or a few elements in each residue 
matrix [2]. Unfortunately, this substantially increases the 
perturbation size. Alternatively, one can use specialized but 

expensive software that can handle the sparsity (e.g. CPLEX) 
[4],[6], but such software is expensive. 

In this paper, it is proposed to reduce the number of free 
variables by perturbing the eigenvalues of each residue 
matrix. This leads to fast versions of the RP and MP 
approaches (FRP, FMP). Usage of the FRP/FMP is 
demonstrated for a two-port interconnect model and for a six-
port transmission line model.  

Rational Model 
It is assumed that the rational model is given on the pole-

residue form (1), approximating the terminal behavior of an 
admittance matrix Y.  
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Matrices {Rm}, D, and E are assumed to be symmetrical, 
and complex poles and residues come in conjugate pairs. The 
modeling can easily be achieved using the pole relocating 
vector fitting algorithm [7], or any of its variants [5],[8]–[10]. 

Residue Perturbation (RP) 
Following the idea in [1], passivity is enforced by 

perturbing the model parameters, leading to the constrained 
optimization problem (2).  
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The first part (2a) minimizes the change to the admittance 
matrix elements while the second part (2b) enforces that the 
perturbed model meets the passivity criterion (3). The third 
(2c) enforces asymptotic passivity while the last constraint 
(2d) has been introduced in order to enforce a positive definite 
E, since an E with negative eigenvalues can cause an unstable 
simulation.   

 (Re{ ( )}) ( ( ))rat rateig s eig s= >Y G 0  (3) 

The implementation of (2) via first order perturbation leads 
to the form (4) where Δx holds the perturbed parameters 
elements. This problem is solved using Quadratic 
Programming (QP).  
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 sys Δ <B x c  (4b)  

Matrix Asys is block diagonal while Bsys is full but with a 
few rows. The solving of (4) can in Matlab be done using 
routine quadprog.m. This routine treats Asys as a full matrix.  

Modal Perturbation (MP) 
In [4] was introduced the Modal Perturbation approach. 

The motivation is to perturb in such a way that the smallest 
eigenvalues of Y are not corrupted. (The same idea is 
underlying the modal vector fitting (MVF) algorithm [5]).  

The admittance matrix Y is diagonalized 

  1−=Y TΛT  (5) 

Equation (5) is post-multiplied with T and first order 
derivatives are taken for each eigenpair (λi,ti) 

  i i i i i iλ λΔ + Δ = Δ + ΔY t Y t t t  (6) 

Terms involving Δti are ignored, and ΔY is replaced with 
(1), giving 
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Introducing a least squares weighting equal to the inverse 
of the eigenvalue magnitude gives the final result (8). Details 
on building the system matrix Asys and sparsity structures is 
shown in [4].  
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Perturbation of Residue Matrix Eigenvalues  
The number of free variables is substantially reduced by 

diagonalizing each residue matrix (individually), and 
perturbing only their eigenvalues  

1 1 1, ,m m m m
− − −= Δ = Δ = ΔD D D E E EΔR S Γ S ΔD S Γ S ΔE S Γ S (9) 

This leads to a full but much smaller Asys (and Bsys) in (4). 
For instance, with n ports and N poles, the number of free 
variables in (4) is reduced from M=(n(n+1))N/2 to M=nN. 
This leads to large savings in computation time since the 
complexity of the core operations in QP is O(M 3). In the case 
of complex conjugate residue matrices, the real and imaginary 
parts are diagonalized separately. Introducing the 
transformation (9) in RP and MP leads to a fast version (FRP, 
FMP) of these algorithms. The system matrix (Asys) is full.  

Implementation issues  
The passivation step in FRP/RP and FMP/MP  is combined 

with passivity checking via the Hamiltonian matrix [2] and the 
robust iteration scheme in [6]. In the iterations, ΔD and ΔE 
are removed from (2) as soon as D and E become positive 
definite. The system matrix Asys in (2) is built only a single 
time and is not updated during iterations. The number of 
constraints in (2b) is kept low by including local minima of 
violating eigenvalues [6].   

Example 1: Single Conductor Interconnect  
As a first example we consider the 2×2 terminal admittance 

matrix Y of a single conductor interconnect, calculated via the 
Enhanced Transmission Line Model [11]. The line length is 
100 mm, with geometrical data given in  [11]. 

The Y-matrix is fitted by a 50th order pole-residue model, 
calculated by the (relaxed) vector fitting algorithm. The 
obtained model has many and quite large passivity violations, 
as can be seen by the negative eigenvalues in Fig. 1. The 
rational model is next subjected to passivity enforcement by 
FMP. As can be seen in Fig. 1, the procedure removes all 
passivity violations with only a moderate perturbation of the 
eigenvalues where they are positive. A similar result was 
obtained with FRP.  

 
Fig. 1  Passivation by FMP 

Example 2: Three Phase Overhead Line 
In this example we use the case previously described in 

[6]. The terminal admittance matrix Y of the transmission line 
in Fig. 2 is computed in the frequency domain, from 10 Hz to 
10 kHz. A 30th order pole-residue model (1) is calculated for 
the six-port Y by fitting all elements simultaneously using 
vector fitting.  

 
Fig. 2  Three-phase overhead line (132 kV line) 
 

The resulting model is non-passive by criterion (3) as 
several eigenvalues of Grat(s) are negative at out-of-band 
frequencies, see Fig. 3. Thus, the objective is to perturb the 
model such that all eigenvalues are positive, while at the same 
time the change to Yrat(s) is minimal in the fitting range 
(10 Hz–10 kHz). 

l=45 km 

4.5 m 

4.5 m 

11 m 14.8 m 

Phase wires:  Rdc=0.121 Ω/km, d=21.66 mm 
Ground wires: Rdc=0.359 Ω/km, d=12.33 mm

ρsoil=100 Ωm 
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The alternative approaches (RP/FRP/MP/FMP) are 
combined with passivity checking via the Hamiltonian matrix 
[2] and the robust iteration scheme in [6]. Iterations are run 
until all passivity violations have been removed. 

 
Fig. 3  Eigenvalues of Grat(s) 
 

Fig. 4 shows the change to the eigenvalues of Grat(s) when 
perturbed by either RP or FRP. It can be seen that both 
approaches have resulted in positive eigenvalues and thus a 
passive model. Despite the rather large correction of the out-
of band passivity violation, the perturbation within the fitting 
band is with both approaches quite small. 

 
Fig. 4  Eigenvalues of Grat(s). FRP vs. RP 
 

Fig. 5 shows the deviation from the eigenvalues of the 
original model Y(s), in the fitting band. It can be seen that 
FRP gives only a slightly larger perturbation of the 
eigenvalues than RP. The increase is remarkably small, 
considering that the number of free unknowns per residue 
matrix has been reduced from 21 to 6. 

Fig. 6 shows the same result when enforcing passivity 
using either FMP or MP. As expected, FMP gives a somewhat 
larger perturbation due to the more constrained solution. 
When comparing the FMP/MP solution with the FRP/RP 
solution (Fig. 5), it is noted that the deviation curves are with 

FMP/MP nearly parallel to the respective eigenvalues whereas 
those by FRP/RP are nearly “flat”. The first result is a direct 
consequence of the inverse eigenvalue weighting in (8), which 
is the intended result.    

 
Fig. 5  Eigenvalues of Yrat(s) in fitting range. FRP vs. RP 

 
Fig. 6  Eigenvalues of Yrat(s) in fitting range. FMP vs. MP 

Discussion 
Table 1 shows some key numbers related to the first 

passivity iteration in Example 2, solved by quadprog.m in 
Matlab. In all cases, Bsys in (4b) has 24 constraints (rows).  
 Usage of FRP/FMP over RP/MP reduces the number of 

free variables from 630 to 180. This reduces the 
computation time by more than 90% for solving the QP 
problem by Matlab’s quadprog.m. 

 The change to Y(s) in the fitting range (||ΔY||2) is higher 
by only a factor of about two when using FRP/RP over 
FMP/MP. Usage of FMP over FRP leads to a larger 
perturbation, since FMP sacrifices accuracy of large 
eigenvalues at the expense of small eigenvalues. 
However, it was shown in [5] that retaining the relative 
accuracy of the eigenvalues can be crucial in situations 
where the model is to be applied with arbitrary terminal 
conditions. This is particularly relevant for models with a 
large eigenvalue spread, for instance a transmission line 
at low frequencies.  
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Table 1  Comparison of RP, FRP, MP, FMP.    

 size(Δx) Time [sec] ||ΔY||2 cond( )T
sys sysA A  

RP 630 19.4  1.02E–4 1.01E5 
FRP 180 1.68 1.68E–4 1.99E5 
     
MP 630 23.1 6.12E–4 6.89E13 
FMP 180 1.96 1.34E–3 4.14E8 

 
It has previously been proposed to reduce the problem size 

by using only a few of the residues as free variables. In Fig. 7 
is compared the change to the eigenvalues of Grat(s) when 
perturbing by either FRP or RP, when in RP using residues 
from the diagonal elements of the residue matrices. This, 
however, leads to a large perturbation of the model. The larger 
perturbation is also evident in Fig. 9, which compares 
deviation curves for the eigenvalues of  Y(s).  

 
Fig. 7  Eigenvalues of Grat(s) when in RP taking diagonal 
             elements of residue matrices as free variables  

 
Fig. 8  Eigenvalues of Yrat(s) in fitting range. FRP vs. RP with 
           diagonal elements of residue matrices as free variables   

 
 

Conclusions 
Enforcing passivity by perturbing residue matrix 

eigenvalues instead of residue matrices, offers several 
advantages, 
 The number of free variables is greatly reduced, thereby 

reducing computation time and memory requirements 
 Large scale problems can be solved without the need for  

specialized sparse QP solvers. 
 When combined with residue perturbation (RP), or modal 

perturbation (MP), the resulting fast approach 
(FRP/FMP) gives only a slightly larger model 
perturbation. 

Usage of FMP/MP over FRP/RP has the additional 
advantage of retaining the relative accuracy of the eigenvalues 
of the admittance matrix, thereby making the passivity 
enforcement less likely to result in inaccurate model behavior 
when applied is situations with arbitrary terminal conditions.   
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