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Models Via a Half-Size Test Matrix

Bjørn Gustavsen, Senior Member, IEEE, and Adam Semlyen, Life Fellow, IEEE

Abstract—Rational models must be passive in order to ensure
stable time domain simulations. The assessment of passivity prop-
erties is usually done via a Hamiltonian matrix that is associated
with the state-space model, allowing precise characterization of
passivity violations from its imaginary eigenvalues. The calcula-
tion of eigenvalues can be time consuming for large models as the
matrix size is equal to twice the number of model states. In this
paper, we derive for -parameter models a new test matrix which
is only half the size of the Hamiltonian matrix. This leads to savings
in the eigenvalue computation time by a factor of nearly eight. The
new test matrix takes into account that the model is symmetrical,
in pole-residue form. Its application is demonstrated by three ex-
amples: a microwave filter, a package, and a synthetic model.

Index Terms—Hamiltonian matrix, macromodel, passivity, pas-
sivity assessment, rational model, -parameters.

I. INTRODUCTION

T IME-DOMAIN simulation plays a crucial role in the de-
sign and verification of high-speed electronic circuits and

communication systems. The modeling of the system parts is be-
coming more challenging as the bit rates keep increasing, giving
rise to higher levels of undesired phenomena such as pulse dis-
tortion, wave reflection, and crosstalk.

Rational modeling is a convenient way of representing linear
parts of the system with inclusion of frequency-dependent ef-
fects. The modeling starts from a set of port responses that
characterize the behavior of the model. The parameters may
come from electromagnetic computations in the frequency do-
main or the time domain or from frequency-domain measure-
ments. The parameters can be in the form of admittance param-
eters, but more often scattering ( -) parameters are used. The
rational modeling can be easily performed in the frequency do-
main using the pole-relocating method known as vector fitting
[1]–[4] which has also been adopted for the time domain [5] and
the -domain [6].

Although the model obtained via vector fitting has guaran-
teed stable poles, the model may result in unstable simulations
because the passivity of the model is not assured. Several
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methods have been proposed which aim at enforcing passivity
by a perturbation of the model parameters. All of these methods
require the ability to assess the passivity characteristics of the
model. For that purpose, it is common practice to calculate the
eigenvalues of a Hamiltonian matrix which is associated with
a state-space formulation of the model [7]–[9]. The imaginary
eigenvalues define frequency boundaries for passivity viola-
tions, thereby allowing to pinpoint frequency intervals where
the model is nonpassive.

A difficulty with the Hamiltonian matrix is its size. Its dimen-
sion is two times the number of system states, which makes the
computation of eigenvalues time-consuming for large models.
It has been proposed [10], [11] to reduce the computation time
by calculating only the (few) imaginary eigenvalues, but a reli-
able implementation is not easy. In [12], a half-size test matrix
was derived for use with models based on admittance ( -) pa-
rameters. The use of a half-size matrix reduces the eigenvalue
computation time by a factor of nearly eight due to the cubic
complexity of eigenvalue computation.

In this paper, we derive a half-size test matrix for use with
models based on scattering ( -) parameters. This is motivated
by the fact that the eigenvalues appear in pairs and quadruples,
thus representing redundant information. First, we show that a
symmetrical pole-residue model implies a symmetrical state-
space model. Using this information, we subject the Hamil-
tonian matrix to a similarity transformation, which reduces the
original eigenvalue problem to a half-size problem. The square
roots of the eigenvalues of the new test matrix are equal to
the eigenvalues of the Hamiltonian matrix, without redundancy.
In the actual implementation, we first convert the state-space
model into a real-only model, giving even faster computations
and noiseless eigenvalues. The new test matrix is applied to the
models of a microwave filter and of a package, demonstrating
the validity of the approach and the speed advantage over the
Hamiltonian matrix. A small synthetic example is included so
that the reader can verify the procedure. We also show a simple
derivation of the Hamiltonian matrix using state equations, and
we prove that the conversion of the state-space model into a
real-only model does not alter the eigenvalues of the new test
matrix. All computations are with Matlab running on a desktop
computer with a 1.3-GHz Pentium processor.

II. RATIONAL MODELING

In this study, we will assume a symmetrical scattering ma-
trix . The symmetry results for reciprocal -port elements with
proper normalization of the port reference impedances. A con-
venient way of calculating a rational approximation is to subject
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Fig. 1. Contribution from the�th term in (1) to the state-space model (2).

the upper triangle part of to fitting by vector fitting. This leads
to a pole-residue model equation

(1)

with symmetrical residue matrices and guaranteed stable poles.
The poles and residue matrices are either real or
come in complex conjugate pairs. The constant term is real
and symmetrical. For an -port model, , and are of
dimension .

For the purpose of passivity assessment, the pole-residue
model must first be cast in the form of a state-space model

(2)

Each pole-residue term in (1) is factorized; see

(3)

where is the identity matrix of the same dimension as [13].
This shows that the th pole-residue term gives a state-space

model with equal to , diagonal with repeated
times, and equal to . The state-space models are con-
catenated into a single state-space model

(4)

The building of , , and from (1) via (3) is illustrated in
Fig. 1, with and .

Finally, we rearrange the columns in , rows in , and rows
and columns of to produce a column-wise realization; see
Appendix A. This rearrangement causes the complex pairs to
appear in consecutive pairs on the diagonal of .

III. PASSIVITY ASSESSMENT VIA HAMILTONIAN MATRIX

The passivity of the model entails that the model cannot gen-
erate energy, at whatever terminal conditions. In the case of scat-
tering parameters, the transfer matrix must be bounded by
unity, i.e.,

(5)

This implies that all singular values of are smaller than
unity, at all frequencies,

(6)

The singular values are given by the singular value decompo-
sition

(7)

where is a diagonal matrix containing the singular values.
A precise way of assessing the passivity properties of a state-

space model is to calculate the eigenvalues of the Hamiltonian
matrix [9] as

(8)

where and .
The model is passive if its Hamiltonian matrix has no purely

imaginary eigenvalues and any imaginary eigenvalue defines a
crossover frequency where a singular value changes from being
smaller than unity to larger than unity, or vice versa.

This approach is widely applied [9], offering a much more
reliable approach than sweeping the singular values over a grid
of discrete frequencies.

Appendix B shows a simple derivation of in (8) using only
state equations, which makes it easy to understand by a wide
segment of readers.

IV. SYMMETRICAL STATE-SPACE MODEL

In what follows, we show that a symmetrical pole-residue
model implies a state-space model with . This result
is essential for the derivations in Section V.

Each residue matrix is subjected to the eigenvalue
decomposition

(9)

where is a diagonal matrix containing the eigenvalues. The
eigenvalue matrix is multiplied with the inverse eigenvector
matrix to form a scaled matrix , and the resulting matrix
product is expanded into a sum of outer products.

The columns and rows are rescaled using the diagonal
elements of and , which makes them equal

(10)

The symmetrical state-space model associated with each
pole-residue term is formed as shown in

(11)
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The columns are introduced as columns in and rows in ,
and the poles are repeated times on the diagonal. Finally, the
state-space models from all pole-residue terms are concatenated
into a single model (11).

Since was used in both (columns) and (rows), it fol-
lows that .

V. HALF-SIZE PASSIVITY TEST MATRIX

For the symmetrical state-space model (with ,
) we get for the Hamiltonian matrix (8)

(12a)

where

(12b)

(12c)

Introducing the similarity transformation

(13a)

(13b)

gives the transformed Hamiltonian

(14)

Each pair of eigenvalue and eigenvector of is given by

(15a)

(15b)

Solving the first equation of (15b) for and substituting into
the second equation gives

(16)

From this, it follows that the eigenvalues of (and thus of
) can be calculated as the square-roots of the eigenvalues of

the half-size matrix

(17)

which, after inserting (12b) for and (12c) for , becomes

(18)

Thus

(19)

We denote the matrix a “passivity matrix.” It is not a Hamil-
tonian matrix.

Theorem: The passivity matrix gives, via the subset of its
negative-real eigenvalues , the frequencies , which are
the boundaries of passivity violations.

Note that the conversion of the state-space model into a sym-
metrical state-space model as described in Section IV does not
need to be carried out. This conversion only served to facili-
tate the derivation of when moving from (12) to (14). Thus,
the calculation of can be done by (18) even when we do not
have , as the properties of the state-space model are
not affected by the conversion. The only requirement is that the
state-space model represent a symmetrical , which is always
the case when starting with a pole-residue model with symmet-
rical residue matrices and a symmetrical .

VI. CONVERSION INTO REAL-ONLY STATE-SPACE MODEL

It is preferable to convert the complex into a real-only ma-
trix before computing its eigenvalues. This has the advantage of
faster eigenvalue computation. In Matlab, a speedup by a factor
of about four is achieved.

For each pair, the corresponding submatrices of the colum-
nwise state-space realization (Appendix A) are modified (via
a similarity transformation) into a real-only model as follows
[14]:

(20a)

(20b)

In Appendix C, we prove that the conversion equation (20)
will not change the eigenvalues of .

VII. EXAMPLE: MICROWAVE FILTER

This example considers a rational model of a two-port hairpin
microwave filter [15]. The model has ten pole-residue terms and
a nonzero . The frequency response is shown in Fig. 2.

The pole-residue model is converted into a real-only state-
space model by the similarity transformation (20). Table I com-
pares the imaginary eigenvalues of the state-space model when
calculated using either the Hamiltonian matrix [(8)] or the
half-size passivity matrix [(18)]. It is observed that the usage
of leads to exactly the same eigenvalues as but without
redundant information. It is also observed that the real parts in
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Fig. 2. Rational model: elements of ��� .

TABLE I
BOUNDARIES OF PASSIVITY VIOLATIONS

the right column are exactly zero. The computation with and
was 3.0 and 0.64 ms, respectively.
Fig. 3 shows the singular values of . The crossover frequen-

cies as defined by the square root of the negative real eigen-
values of are included in the plot with red dots. Clearly, the
eigenvalues correctly identify the frequencies where the sin-
gular values are unity.

VIII. EXAMPLE: PACKAGE APPLICATION

This example considers the -parameter modeling of a sur-
face mount package [9]. The example has 28 ports. Using vector
fitting, a symmetrical pole-residue model is obtained with 40
pole-residue terms and a constant term , which is converted
into a real-only state-space model by (20). The singular values
of are shown in Fig. 4.

Table II compares the CPU time needed for computing the
eigenvalues of and , respectively. It is seen that the usage
of reduces the computation time by a factor 7.4, which is close
to the theoretical value of eight. ( was computed from , ,

, and by (18) in 3.3 s).
Figs. 5 and 6 show the singular values of at low and high

frequencies, respectively. It is seen that the square roots of the

Fig. 3. Singular values of ��� and crossover frequencies calculated via ��� .

Fig. 4. Rational model: singular values of ���.

TABLE II
TIME CONSUMPTION FOR EIGENVALUE COMPUTATION

Fig. 5. Singular values of ��� and crossover frequencies calculated via ��� . Low
frequencies.

negative eigenvalues of (indicated by dots) correctly identify
the crossover frequencies.
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Fig. 6. Singular values of ��� and crossover frequencies calculated via ��� . High
frequencies.

Fig. 7. Parameters of pole-residue model.

Fig. 8. Parameters of real-only state-space model.

Fig. 9. Elements of passivity matrix, ��� .

IX. EXAMPLE: SYNTHETIC MODEL

Here, we demonstrate the complete passivity test procedure
for a synthetic example so that the reader can verify his own
computations. The example is a two-port scattering matrix de-
fined by a third-order pole-residue model (1). The parameters of
the model are listed in Fig. 7.

Fig. 8 shows the parameters of the corresponding real-only
state-space model, obtained via (4), the procedure in
Appendix A, and (20).

Fig. 9 shows the elements of the passivity matrix . This
matrix is calculated from the state-space model using (18).

Table III shows that the square root of the eigenvalues of
(left column) are equal to the eigenvalues of (8) (right

column), but without redundant information. The purely imagi-
nary elements (contained in dashed boxes) identify the frequen-

TABLE III
SQUARE ROOT OF EIGENVALUES OF ��� . EIGENVALUES OF���

Fig. 10. Singular values of ��� and crossover frequencies calculated via ��� .

cies where the singular values become unity. This result
is verified in Fig. 10: the singular values cross the unity line at
frequencies 4.24 and 16.43 rad/s.

X. DISCUSSION

The half-size test matrix [see (18)] is valid provided that
the state-space model represents a symmetrical . This type of
model can easily be obtained by subjecting the upper triangle of

to vector fitting. The simultaneous fitting of many matrix ele-
ments can be time consuming, which has formerly motivated the
use of columnwise fitting [16], leading to a private pole set for
each matrix column. This gives an unsymmetrical state-space
model, and thus the half-size test matrix cannot be used. How-
ever, the recent introduction of a fast implementation of vector
fitting [17] has solved much of the speed issue. For instance,
each vector fitting iteration (fast implementation) required only
about 7 s for the package example in Section VIII with 201 fre-
quency samples. Therefore, the use of pole-residue modeling is
applicable also to large cases.

Application of also requires that the matrices and
are nonsingular, in order to facilitate the matrix inver-

sions in (18). Limitations on also exist with ; see (8).

XI. CONCLUSION

A new test matrix has been introduced for the passivity
assessment of -parameter based rational models.

Authorized licensed use limited to: Sintef. Downloaded on December 9, 2008 at 02:17 from IEEE Xplore.  Restrictions apply.



2706 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 56, NO. 12, DECEMBER 2008

Fig. 11. Columnwise realization of (4).

1) The square root of its negative-real eigenvalues define the
frequencies where the singular values of cross the bound
of unity, i.e., the borders of passivity violations.

2) The new passivity test matrix is only of half the size of
the Hamiltonian matrix which has been traditionally used
for passivity assessment. Usage of the new test matrix gives
a reduction in the time needed for the eigenvalue compu-
tation by a factor of nearly eight.

3) The applicability of the new test matrix is restricted to sym-
metrical state-space models. Such models are obtained by
fitting a (symmetrical) pole-residue model to .

APPENDIX A
COLUMNWISE REALIZATION OF STATE-SPACE MODEL

The state-space model (4) is converted into a columnwise re-
alization by interchanging columns in , rows in , and rows
and columns in . The resulting structure is illustrated in Fig. 11
for the previous example in Fig. 1 . gets
a submatrix of dimension (with distinct poles) which is
repeated times on the diagonal, and gets columns of
ones. The th partition of contains the concatenation of the th
column of the residue matrices. It is noted that each column
of is in effect represented by a separate block in and in .
Complex pairs appear in consecutive entries on the diagonal of

(and columns of ).

APPENDIX B
DERIVATION OF HAMILTONIAN MATRIX

For the transfer function , we require with a unit input
that the output be bounded by unity

(21)

The Hamiltonian is defined by the condition that the
inequality (21) becomes equality, which is a singularity re-
quirement for loss of passivity. For this, we write

(22)

This leads us, with , to find when

(23)

From (23), we see that first acts on (with state-space
parameters , , , and ). Then, the output becomes the
input to (with the respective state-space parameters ,

, , and ). From the output of the latter model, we
subtract itself. This gives

(24a)

(24b)

(25a)

(25b)

(25c)

If we substitute from (24b) into (25a) and (25b) and
from (25b) into (25c), the above equations become

(26a)

(26b)

(26c)

or

(27a)

(27b)

From (27b), we substitute into (27a) and get

(28)

where

(29)

This can be rewritten as

(30)

where

(31a)

(31b)
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Thus, the Hamiltonian matrix is

(32)

and its imaginary eigenvalues [as shown in (30)] give the
frequencies for which (23) is satisfied and the matrix

is singular.
Since the model is assumed to satisfy the conjugacy prop-

erty , where the asterisk denotes conjugate,
the transfer function does not change if the state-space
matrices , , , are replaced with their conjugate coun-
terparts. Thus, the Hermitian transpose in (32) can be replaced
with simple transpose and (32) becomes equal to (8).

APPENDIX C
CONVERSION INTO A REAL STATE-SPACE MODEL

The state-space model in complex form can be written as

(33a)

(33b)

where the transition matrix is diagonal. Subscripts and
denote the partitions with real and complex poles, respectively.

Introducing the similarity transformation [14]

(34)

where

(35)

gives a new state-space model with real matrices

(36a)

(36b)

(36c)

In the following, we show that the transformation (34) will
not change the eigenvalues of the passivity matrix [(18)].

Introducing the transformation (36a)–(36c) into (18), we
obtain

(37)

or, after some simplifications, we have

(38)

We thus have

(39)

This shows that the eigenvalues of can be obtained as those
of since the two are related by the similarity transformation
(39). Thus, instead of (19), we use the equation

(40)
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