IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 1, FEBRUARY 2010 257

Fast Passivity Enforcement for S-Parameter Models
by Perturbation of Residue Matrix Eigenvalues

Bjgrn Gustavsen, Senior Member, IEEE

Abstract—Rational macromodels must be passive in order to
guarantee a stable simulation. This paper introduces a fast ap-
proach for enforcing passivity for S-parameter based pole-residue
models, using a similar method previously introduced for Y-pa-
rameter models. The approach is based on perturbing the elements
of the residue matrices with the perturbed residue matrix eigen-
values as free variables. This gives large savings for the CPU time
and memory requirements. The implementation does not require
sparse computations. Combining the passivity enforcement step
with iterations and fast passivity assessment via a half-size test
matrix gives a globally passive model. Error control strategies are
implemented via least squares weighting. The approach is demon-
strated for a two-port microwave filter, a four-port interconnect,
a 48-port low-order package model, and a 28-port high-order
package model.

Index Terms—Macromodel, passivity, passivity enforcement,
perturbation, rational model.

1. INTRODUCTION

ELIABLE time-domain simulation of high-speed elec-
R tronic systems requires that each part of the system is
modeled with sufficient accuracy. For instance, wave reflection
and frequency-dependent distortion effects must be included in
simulation of interconnects [1]. Similarly, the design and opti-
mization of electronic packages requires accurate representation
of the structure behavior over a wide frequency band.

Linear components and systems are often modeled via ra-
tional macromodels that emulate the behavior of the component
with respect to a set of ports. The macromodel can easily be
included in a SPICE-like simulation environment via a lumped
circuit representation [2] or recursive convolution [3]. The char-
acterization of the port behavior can come from electromag-
netic calculations or measurements in the frequency domain
or the time domain. The actual modeling from tabulated port
data can easily be done using the pole relocating method known
as vector fitting [4]-[11]. Vector fitting produces a multiport
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common-pole model with guaranteed stable poles. A major dif-
ficulty is that the extracted model is often nonpassive, i.e., it
generates energy under certain port conditions. This can lead to
unstable simulations in an unpredictable manner. The stability
problem can be avoided by enforcing passivity during the fitting
process using convex optimization [12], but that approach often
requires lengthy computation times [13].

A perturbation method for passivity enforcement was in-
troduced in [14], [15] for use with admittance (Y-) parameter
models. (A similar approach for scattering (S-) parameter
models was adopted in [16]). Passivity is enforced at discrete
frequencies by perturbing the model residues such that the
change to the admittance matrix is minimal in a considered
frequency band (in-band). For package applications, the com-
putational efficiency is low due to the need for solving a large
and sparse quadratic programming problem, although sparse
solvers can greatly improve the efficiency [17]. In addition,
iterations are in general needed which are prone to divergence.
A very fast procedure for passivity enforcement was proposed
in [18]. That method perturbs the model residues indirectly
via the Hamiltonian matrix eigenvalues to give a minimal
change to the model impulse energy. The resulting change to
the model behavior is higher than with the approach in [14],
since it cannot discern between in-band and out-of band pas-
sivity violations, and because it lacks least squares weighting
capability. In addition, it often requires more iterations [13].
Recent work has alleviated some of the accuracy problem
[19], but divergence can still take place. Perturbation of poles
was introduced in [20], leading to a computationally efficient
approach. The perturbation of poles effectively scales each
pole-residue term by a common factor, thereby giving a larger
change to the model behavior than with residue perturbation.
In [21], the speed problem of the residue perturbation method
[14] was overcome by choosing the residue matrix eigenvalues
as free variables, avoiding the need for sparse solvers. When
combined with passivity assessment via the Hamiltonian matrix
eigenvalues and a robust iterative technique [17] for prevention
of divergence, an efficient and reliable approach was achieved
for use with admittance-based pole-residue models. Modal
perturbation was introduced for Y-parameter models in [22],
[21] in order to preserve the relative accuracy of the model’s
modes. That feature appears less useful for S-parameter models
since the ratio between the largest and smallest eigenvalue of
S is much smaller than with Y.

Precise localization of passivity violations was introduced in
[23], [18], [15], based on the eigenvalues of a Hamiltonian ma-
trix associated with the model. The computational efficiency
has later been improved by usage of dedicated solvers [24] and
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fast sweep methods [25], [26]. Half-size test matrices have been
introduced for the use with symmetrical models in [27], [28]
(Y-parameters), and [29] (S-parameters).

In this paper, perturbation of residue matrix eigenvalues is
adopted for the use with symmetrical scattering parameter based
models on pole-residue form. Although much of the applied
methodology has been presented in the past [14], [21], [29], the
current paper shows the complete procedure for use with scat-
tering parameters (rather than admittance parameters [21]) and
it includes many details related to the implementation. In partic-
ular, the building of the constraint matrix is shown in detail. In
addition, the applicability of the procedure is demonstrated for
cases with many ports. Passivity entails that all singular values
of the scattering matrix S are smaller than unity, at all frequen-
cies. An augmented matrix is formed whose eigenvalues are
equal to the singular values of S. Eigenvalue perturbation theory
is used for relating a perturbation of the residue matrices to the
singular values. The constraint on singular values is applied at
carefully selected frequencies and combined with least squares
minimization of the change to S over a given frequency band.
The problem size is reduced by choosing the (perturbed) residue
matrix eigenvalues as free variables, thereby saving memory and
computation time. The building of the system matrices is shown
in detail with consideration to efficient memory handling and
the use of column scaling for improved numerical robustness.
The approach is combined with iterations and fast passivity as-
sessment by a half-size test matrix. The approach is demon-
strated for a two-port microwave filter, a four-port interconnect,
a 48-port low-order package model, and a 24-port high-order
package model. Finally, the numerical performance is compared
with an implementation using residue perturbation and a sparse
solver.

II. PASSIVITY REQUIREMENT

This work considers passivity enforcement of a symmetrical
n-port pole-residue model (1). The poles {a,, } and residue ma-
trices { R, } are either real or come in complex conjugate pairs,
and all {R,,,} are symmetrical. The constant term D is real and
symmetrical, and possibly zero. This type of model can be ob-
tained by subjecting the scattering matrix Sqa¢a(s) to rational
approximation by vector fitting [4]. For the purpose of pas-
sivity assessment, we will convert the pole-residue model into a
state-space model with parameters A, B, C, D. The conversion
process amounts to simple rearrangement of parameters given
in the pole-residue model. The details are shown in [29]

. R
Sdata(s) = S(S) = Z s _72 + D
m=1 m
=C(sI— A 'B+D. (1)

The model is passive if all singular values o; of S are smaller
than unity, at all frequencies s = jw [30], [31]. Thus, for the
singular value decomposition (2), condition (3) is to be satisfied,
where ¥ is a diagonal matrix that contains the singular values.

The number of singular values, n, is equal to the number of
ports, i.e., the dimension of S. In (2), the superscript H denotes
hermitian (transposed and conjugated)

S(s) = U(s)S(s)V " (s) @
oi(s)y<1l,i=1...n. 3)

III. PASSIVITY ASSESSMENT

A. Identifying Bands of Passivity Violations

Bands of passivity violations have traditionally been identi-
fied via the eigenvalues of a Hamiltonian matrix M that is as-
sociated with the state-space model [15], [18], [23]. Since the
pole-residue models considered in this work are symmetrical
by construction, the same information can be obtained via the
eigenvalues of the half-size passivity matrix P (4), [29]

P=(A-BD-I)"'C)(A-BD+I1)"'C). )

The square-root of any negative-real eigenvalue of P defines
a crossover frequency jw where a singular value changes from
being smaller than to larger than unity, or vice versa [29]. Note
that usage of P instead of M gives a reduction in computation
time for the eigenvalues by a factor of about eight, since the
complexity of eigenvalue computation is cubic.

Frequency bands of passivity violations are next identified by
checking the singular values of S at the midpoint between the
crossover frequencies, similarly as shown in [22, Sec. III] for
Y-parameter models.

B. Identifying Maxima for Passivity Violations

Within each violating band, the local maxima are identified
by a frequency sweep. The singular values as returned by a gen-
eral SVD algorithm are sorted according to their size. This im-
plies that spurious maxima appear whenever two singular values
cross. This problem is overcome by rearranging the sequence of
the singular values (and columns in U and V') when moving
from one frequency point to the next. This is achieved by as-
sessing the change in the direction of the columns of U, using
the switching-back procedure introduced for eigenvalue decom-
positions in [32].

IV. PERTURBATION

The singular values of S can be obtained as the eigenvalues
of the augmented matrix H (5) which leads to the eigenvalue
problem (6), [33]. The superscript H denotes transpose and con-
jugate

0o s
H:[SO} )
v v1'[o S#1[v v]_ [ o
v -u| |s ol||lU -U|T |0 -=|°
(6)
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Carrying out the matrix inverse gives (7), see Appendix. Re-
taining the partition associated with the positive X leads to (8),
which in compact form is written as (9)

1{vt uvt]fo s#][v v] [=Z o0

2lvt —u'||Ss o ||lU -U| |0 -%
. @)

1., ....[0 8 V]

e onfs ][y

QHT = %. ©)

The relation between a perturbed singular value and the ele-
ments of H can now be established using the perturbation theory
of eigenvalues. First order perturbation of the (truncated) eigen-
value problem (9) leads to the linear relation (10), where qZT and
t; denote the ith row of @ and the ith column of T', respectively

T AHL
Aci(S) = Ax(H) = T35

1=1...n.
a't;

(10)

When the eigenvectors have been scaled to unit length, the
denominator of (10) is unity. Introducing the partitioning (11)
and carrying out the multiplication gives the sum (12)

0 AS"][ti.] .
Ao; =[df, qu][AS 0 Ht;,,]f‘:l---“ (11)
Ao; = ¢, AStiq +al, A8 i, i=1...n. (12)

It is noted that the two terms in (12) are the conjugate of each
other. This gives the simpler form (13)

Ac; = 2q} , ASt; 4, i=1...n. (13)

V. PASSIVITY ENFORCEMENT

A. Basic Formulation

The objective is to calculate a minimal perturbation AS (14a)
to the model, such that the passivity constraint (14b) is satisfied

AS =0 (14)
o+ Aoc; <1, 1=1...n (14b)
where
N
AR,
AS = — +AD 15
m}; pa— (15)

Equation (14) is formulated as a constrained least squares
problem (16), similarly as in [14], where Az holds the free vari-
ables (elements of {AR,,,} and AD). Equation (16) is solved
using quadratic programming

1 T AT
r&gl 3 (Az AsysAsysA-’E) (16a)
B Az < c. (16b)
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B. Diagonalization of Residue Matrices

Each residue matrix is diagonalized (17). Since the residue
matrices are real and symmetric, the eigenvector matrices P,,
are real and the matrix inverse equals the matrix transpose

R, =P, Ar PT. (17)
First order perturbation of a residue matrix gives
Rm + A-lzm - PM(ARm + AARm)Pg (18)

S — Qm S — Qm

The perturbed residue matrix eigenvalues AA g = are chosen
as free variables in (16) via (19a), rather than the (perturbed)
residue matrix elements. In the case of a complex conjugate pair,
the real and imaginary parts are diagonalized separately. Simi-
larly, the eigenvalues of a nonzero D are used as free variables
(19b). Note that the eigenvector matrices P,,, and P are ob-
tained directly from R,,, and D, which are known quantities

AR,, = P,,AAgr, PT
AD = PpAApPE.

(19a)
(19b)

During passivity enforcement, all residue matrix elements be-
come perturbed via a reduced set of variables. The number of
free variables is n N compared to n(n 4+ 1)N/2 when individ-
ually perturbing all matrix elements and utilizing symmetry.
As a result, the computation time needed for solving (16) is
greatly reduced since the computation time of the basic oper-
ations in quadratic programming is cubic with problem size.
After solving (16), the changes {AR,,,} and AD are recovered
via (19a) and (19b).

C. Building the Least Squares Equation

First, consider a pole-residue term associated with a real pole.
Expanding the factorization (19a) into a sum of outer products
gives (20), where P; is the jth column of P in (19a)

AR 1 <«

_ T .
S—a a s—aijij)\j
j=1
1 n
= ermj >~ (). (20)
S—a =

By placing the elements of AR in a single vector, (20) can
be cast in the form of a matrix-vector equation with A); in the
vector of unknowns. This is shown in (21) for an example with
n = 2 ports. (The superscript denotes “;” in (20) while the sub-
script denotes the matrix entry). It is observed that enforcement
of symmetry leads to the deletion of one row (elements (2,1))
and to the scaling of one row (elements (1, 2)) with a factor of
two

ri, r?
1 1,1 1,1 AN L
— 21{‘1{’2 215%’2 [A)ﬂ >~ (). (21)
2,2 2,2
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Next, consider one complex conjugate pair. In order to en-
force the conjugacy requirement for S(s) in the solution, the
pair is separated into its real and imaginary parts (22)

AR + jAR'
s —(a’' + ja)

AR — jAR"

s — (a' — ja")

= f(s)AR + g(s)AR" (22a)

1 1
J(s) = s — (a' + ja") Tz (a/ = ja”) (220)
9(s) = - - I ()

s— (' +ja") 5= (a —ja")

Combining (22) with the eigenvalue decomposition (20)
leads to (23), which is written as a matrix equation, similarly
as in (21)

n

F(5)D T AN; +g(s) Y T7;AN =0,

=1

(23)

=1

Equation (23) is recasted into the form of a system matrix
Ay (24), where the free variables are enforced to become real
quantities by separating each equation into its real and imagi-
nary parts

A NG = [mﬂ Ai = m . (24)

SA 0

Agys has Mn(n + 1) rows and Nn columns, where M is the
number of frequency samples, n is the number of ports, and N
is the order. In the case of applications with many ports (e.g.,
packages), the memory requirements for Agys can become ex-
cessive. This problem is avoided by building the normal equa-
tions Az;,SASyS of (16a) via a sum of outer products (25), thereby
avoiding the need for forming Agys

T _§ : T
AsysASyS - Asys,rowASysarOW'

row

(25)

D. Building the Constraint Equation

In the case of a real pole-residue term, (20) replaces AS in
(13). This gives the relation (26) between a perturbation of a
free variable A); and the singular value, Ao. (The subscript ¢
in (13) has been discarded for clarity). The computation of the
coefficients in (26) is fast since it involves inner products

_ 2% (arp)) (pfta) AN
s—a

Ao (26)
In the case of a complex conjugate pair, the contribution from

the jth eigenvalue is shown in (27). The prime and double prime

denote the contribution from AR’ and AR”, respectively

Ao = [ki(s) ka(s)] {ﬁﬂ (27a)
ki(s) = 2£(s) (4} 9';) (%) (27b)
ka(s) = 2¢g(s) (q{p”j) (p"]rta) . (27¢)

Fig. 1. Passivity enforcement at singular value maxima.

The presence of a proportional term D is handled as in (21)
and (26), but with the coefficient (s — a) replaced with unity.

Finally, the resulting constraint matrix By in (16b) is re-
placed with its real part.

E. Column Scaling

The conditioning of (16) is improved by scaling the columns
of Agys. Normally, these columns would be scaled to unit Eu-
clidian length. However, since the columns of Agys are not ex-
plicitly formed (Section IV-C), the scaling is unknown. As ap-
propriate scaling we therefore choose the inverse norm of the
basis functions. This implies the scaling ||(s — a)||2 for a real
pole, and ||1/f(s)||2 and ||1/g(s)]|2 in the case of a complex
pair, with f and g defined in (22). After solving (16), the el-
ements of the solution vector are recovered by multiplication
with the same scaling factors.

FE. Sample Selection

The frequency samples for the least squares part (16a) can
in principle be arbitrarily chosen. It does, however, make more
sense to use the same samples as was used in the identification
of the original pole-residue model (1). This choice has the addi-
tional advantage that it leads to adequate numerical conditioning
of (16a). In order to further improve the conditioning, auxiliary
frequency samples are added at frequencies which correspond
to the location of out-of-band poles. These samples are given a
low weighting in the least squares problem so that they do in
practice not affect the in-band result.

Frequency samples for the constraint part (16b) are chosen as
maxima for violating singular values, see Fig. 1. This reduces
the number of rows in Bgys to a minimum, thereby increasing
the computational efficiency. The singular values are enforced
to be smaller than unity by a small value, in order to reduce the
required number of iterations.

G. Error Control Strategies

Each row in Agys in (16a) corresponds to one element of S
at one frequency sample. The quality of the perturbed model
can therefore be manipulated by row-weighting. For instance,
weighting with the inverse element magnitude is a straightfor-
ward approach for achieving relative error control.
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« Convert pole-residue model ({R,,},D) into state-space
model (4,B,C,D) (1).

» Form passivity matrix, P (4).

« Identify crossover frequencies for singular values of §
as the square-root of negative eigenvalues of P.

« From list of crossover-frequencies, identify bands of
passivity violations.

« Identify frequencies of maximum violation (Fig.1) by
sweeping singular values of S.

Fig. 2. Passivity assessment.

* Calculate S at frequencies of maximum violation.

* Calculate singular value decomposition, [U, 2, V]= svd(sS).

* Form qZ ,» and tiTﬂ of'the first order perturbation (13).

* Diagonalize matrices {R,,} and D (19).

» Take the eigenvalues as free variables and calculate the
reduced-size perturbation (26).

* Build the (reduced) constraint equation (16b).

If first iteration step:

* Calculate the reduced-size cost function (23) at
frequencies defining the fitting band.

* Build the (reduced) cost equation (16a).

* Solve (16) using Quadratic Programming.
* Update pole-residue model.

Fig. 3. Passivity enforcement.

H. Iterations

The passivity enforcement step must be applied repeatedly
due to the nonlinearity of (16b), and because the passivity en-
forcement step may cause new violations to arise. In practice,
divergence may occur. The divergence problem is overcome by
the robust iteration procedure introduced in [17] and [21] which
employs an inner loop that adds more constraints at frequen-
cies where new passivity violations occur. This feature was not
needed for the examples in this paper.

Agys is built during the first iteration and reused in the subse-
quent iterations, thereby saving computation time. This implies
that the first iteration is computationally more expensive than
the rest.

VI. ALGORITHM OVERVIEW

The main steps in the procedure for passivity assessment
(Section IIT) and passivity enforcement (Sections IV and V) are
summarized in Figs. 2 and 3, respectively.

VII. TEST CASES

The complete passivity enforcement procedure is applied to
four different test cases: a microwave filter, a high-speed inter-
connect, and two package applications. In all cases, the usage of
an inner loop (V-H) is disabled. The listed CPU-times include
all overhead costs. The CPU-times for critical computations
are listed separately in Section VIII. All computations are with
Matlab running on a desktop with a 1.3 GHz Pentium processor
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Fig. 4. Singular values of S.

and 2 Gb RAM. The quadratic programming problem (16) is
solved using routine “quadprog” in the Matlab Optimization
Toolbox. The singular value decomposition of S is calculated
using routine “svd” in Matlab, which is based on LAPACK rou-
tine ZGESVD [34] (complex and double precision). This rou-
tine makes use of bidiagonalization followed by singular value
decomposition by a QR-based procedure described in [35].

A. Case I: Microwave Filter

The first example is a tenth-order rational model of a mi-
crowave hairpin filter [20]. As shown in Fig. 4, the model has
singular values exceeding unity, thus being nonpassive.

Passivity enforcement was applied with relative error control
by usage of inverse least squares weighting in (16a). It is seen
in Fig. 4 that all singular values become smaller than unity, thus
implying a passive model.

Fig. 5 shows the elements of S. It is seen that the passivity
enforcement does not impair the accuracy of the model. It is
noted that with unitary weights (not shown), the small elements
in Fig. 5 were inaccurate where they are smaller than 0.001 in
magnitude.

The passivity enforcement required three iterations, using a
total of 3.0 s (including passivity assessment).

B. Case II: Interconnect System

This example considers a chip-to-chip interconnect system
whose scattering parameters have been measured in the fre-
quency domain [36]. This four-port system is subjected to
rational fitting by vector fitting in the frequency range model
0.775-7.52 GHz using 100 pole-residue terms and 271 fre-
quency samples.

The resulting model has a large passivity violation at low fre-
quencies (out-of-band). Figs. 6 and 7 show the effect of the
passivity enforcement on the singular values of S, using uni-
tary weighting. It is seen that passivity is enforced with only a
small perturbation of the in-band behavior. This is clearly seen
in Fig. 8, which shows the effect of the passivity enforcement on
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Fig. 5. Elements of S.
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Fig. 6. Singular values of S.

the elements of S. (In all plots, “Deviation” denotes the magni-
tude of the complex-valued deviation, thus taking into account
the phase difference.)

The passivity enforcement required four iterations, using a
total of 22 s (10 s for passivity assessment and 12 s for passivity
enforcement).

C. Case IlI: Low-Order Package Model

This example considers a nonpassive rational model of a ball
grid array package [20]. The model has 48 ports and is repre-
sented by six pole-residue terms and a constant term (D).

The model has substantial passivity violations, see Fig. 9. The
passivity enforcement (using weighting with the inverse element
magnitude) required six iterations, using a total of 140 s (62 s
for passivity assessment and 78 s for passivity enforcement).
The result in Fig. 9 shows that all singular values have been
enforced to be smaller than unity.

1.6 T
Original
1.4} o After passivity enforcement §
Deviation
7l /\ -
1

0.6

0.4

02} g N 1
- - Fitting band

0.8 1
Frequency [GHZz]

Fig. 7. Singular values of .S. Low frequencies.
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Fig. 8. Elements of S.
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Fig. 9. Singular values of S.
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Fig. 10. Singular values of S.

TABLE I
CASE DESCRIPTION
Model Poles M Ports » Description
Case | 20 2 MW filter
Case II 400 4 Interconnect
CaseIIl | 288 48 BGA package
Case IV | 1120 28 Surface mount package

D. Case IV: High-Order Package Model

This 28-port example considers the modeling of a sur-
face mount package [18]. The extracted model has 40
pole-residue terms and a constant term (D). Thus, A is
quite large (1120 x 1120).

The model has passivity violations at both low and high
frequencies, see Fig. 10. The passivity enforcement (using
weighting with the inverse element magnitude) required three
iterations, using a total of 466 s (148 s for passivity assessment
and 318 s for passivity enforcement). It is observed that all
singular values have been enforced to be smaller than unity.

VIII. COMPUTATIONAL EFFICIENCY

In the following we compare the computational efficiency
of the proposed implementation with that of other implemen-
tations. As before, all calculations are with a 1.3-GHz Pen-
tium Processor. The focus is on the critical computational steps:
Calculating crossover frequencies (passivity assessment) and
solving the quadratic programming problem (16) (passivity en-
forcement).

Table I summarizes the characteristics of the test cases. The
quantity M denotes the number of poles of the associated state-
space model, M = nN.

Table II compares the CPU time for eigenvalue computation
when the crossover frequencies are obtained from either the tra-
ditional Hamiltonian matrix M or the half-size passivity matrix
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TABLE II
CPU TIME FOR EIGENVALUE COMPUTATION
Model eig(M) eig(P) Speedup
Case Il 6.9 sec 0.84 sec 8.2
Case 111 2.2 sec 0.24 sec 9.2
Case IV 111 sec 14.7 sec 7.6
TABLE III
PASSIVITY ENFORCEMENT METHODS
Method Description QP solver
A Residue perturbation. quadprog
B Residue perturbation. CPLEX
C Eigenvalue perturbation. | quadprog
(method in this paper)
TABLE IV
NUMBER OF ITERATIONS
Model A B C
Case I 3 3 4
Case III - 3 6
Case IV - 4 3

P as adopted in this work. It is observed that usage of P leads
to about eight times faster computation of eigenvalues.

Table III lists three alternative methods for passivity enforce-
ment.

A) The perturbed residue matrix elements are taken as free
variables while utilizing symmetry [14]. The (sparse)
quadratic programming (QP) problem (16) is solved
using routine “quadprog” in the Matlab Optimization
Toolbox. quadprog does not utilize the sparsity of (16a).

B) Same as A, but with the QP-problem solved using CPLEX
[37]. CPLEX takes advantage of the sparsity of (16a), un-
like quadprog.

C) Method used in this paper. The perturbed residue matrix
eigenvalues are taken as free variables. The QP problem
(16) is solved using the Matlab routine “quadprog.”

Table IV shows that all methods A—C' successfully enforce
passivity in 3-6 iterations. Method A is not applicable to
problem cases III and IV due to excessive memory require-
ments.

Table V lists the total CPU time (all iterations in Table IV)
needed for solving the QP-problems. In Case II (interconnect),
method A requires 20.1 s while methods B and C solve the
problems in only 1.1 s and 4.4 s. In Case III (BGA package),
method B requires 1.3 min with C' requiring only 0.4 min. In
Case IV, method B is the fastest. It can be concluded that method
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TABLE V
COMPUTATION TIME FOR SOLVING QP PROBLEMS

Model A B C

Case I | 20.1 sec 1.1sec | 4.4sec
Case III - 1.3 min | 0.4 min
Case IV - 1.5min | 2.7 min

10°

IS |

Fitting band

10 T E
Original
After passivity enforcement
P Deviation
10 = . - '
(0] 2 3 6 8 10

Frequency [GHz]

Fig. 11. Elements of S. Passivity enforcement by residue perturbation.
(Method B in Table III).

C represents a good alternative to method B. It has the addi-
tional advantage of not needing a sparse solver (e.g., CPLEX)
for the QP-problem. On the other hand, the resulting perturba-
tion of the model is often smaller with method B, due to the
higher number of free variables. Fig. 11 shows the elements of
the scattering matrix S for Case II when passivity has been en-
forced using method B. Comparison with Fig. 8 (method C')
shows that the change to the model is smaller.

Note that the passivity assessment has to be carried out in
every iteration. For instance, in Case III with method C, a total
of seven passivity checks is done, requiring a total of 7 x 0.24 =
1.7 s.

IX. DISCUSSION

Using perturbed residue matrix eigenvalues as free variables
leads to a significant speed improvement over the approach with
direct perturbation of residue matrix elements [14] because
the number of free elements is reduced from Nn(n + 1)/2
to Nn. Since the complexity of the basic steps in quadratic
programming (used for solving 16) is cubic, it follows that the
complexity is reduced from O(N3n®) to O(N3n?). Thus, the
speed improvement is particularly significant for cases with
many ports, n, typically found in package applications. Direct
perturbation of residue matrix elements also leads to an efficient
approach when utilizing the sparsity of the problem formulation
(Section VIII, method B). That approach, however, requires

the usage of a specialized sparse solver for the quadratic pro-
gramming problem (16), e.g., CPLEX. Such solvers are often
expensive.

X. CONCLUSION

A passivity enforcement method has been introduced for use
with symmetrical S-parameter rational macromodels on pole-
residue form.

1) Passivity is enforced by perturbing the residues such that
the singular values become smaller than unity at frequency
points where the singular values are maximum and greater
than unity.

2) The approach is efficient in terms of CPU time and memory
requirements since the perturbed eigenvalues of the residue
matrices are used as free variables, rather than the (per-
turbed) residue matrix elements. This reduces the size of
the quadratic programming problem to be solved, in par-
ticular for cases with many ports.

3) Error control strategies are easily implemented via least
squares weighting, for instance relative error control.

4) The passivity assessments is accurately and efficiently car-
ried out by checking the eigenvalues of a test matrix which
is half the size of the traditional Hamiltonian matrix.

5) The approach was successfully applied to four test exam-
ples: a microwave filter, a high-speed interconnect struc-
ture, and two package applications.

6) The computational efficiency is comparable to what can
be achieved with direct perturbation of residue matrix ele-
ments combined with a sparse solver (CPLEX).

APPENDIX
INVERSION OF PARTITIONED MATRIX

For a matrix partitioned into four blocks (28), the matrix in-
verse can be calculated by (29), [38]

Ar A
A= 28
[A21 An] 28
- c' —A7'ACHY
Al = e B 11 _12 2 29
|:_02 1A21A111 02 1 ( )
where
Ci = Ay — ApAy) Ay (30a)
Cy= Ay — A21Af11A12~ (30b)
In (6), we are interested in the matrix inverse of
Vv Vv
A= [U —U} (3D
This gives for (30a), (30b)
C, =2V (32a)
Cy,=-2U (32b)
and for (29)
o, 1[vt pt
A - 5 V71 —U71 . (33)
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