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Abstract—This paper compares alternative methods for linear
modeling of simulated time-domain responses by a rational
approximation. The traditional approach based on autoregres-
sive moving average (ARMA) is compared with two alternative
approaches that have been introduced in recent years: Z-Do-
main Vector Fitting (ZD-VF) and Time-Domain Vector Fitting
(TD-VF). Following a description of their implementation and
fundamental properties, the methods are applied to the modeling
of a frequency-dependent network equivalent. It is shown that
TD-VF offers superior results in terms of accuracy and robust-
ness, and the model has guaranteed stable poles. The ARMA
approach requires higher orders than the others and the resulting
model can be unstable. The ZD-VF approach is robust and gives
a model with stable poles, but it produces incorrect simulation
results when applied to truncated time-domain responses. The
inaccuracy is caused mainly by the conversion of time-domain
data into the -domain. The fitting process of ARMA is faster
than with the other approaches since it does not involve iterative
pole relocations.

Index Terms—Autoregressive moving average (ARMA), fre-
quency-dependent network equivalent (FDNE), macromodel,
rational approximation, time-domain vector fitting, -domain
vector fitting.

I. INTRODUCTION

T HE SIMULATION of electromagnetic transients in power
systems [1] requires modeling all relevant components

with sufficient accuracy, including their frequency-dependent
effects. In the case of linear components, this can be easily
achieved via approximation with rational functions. This ap-
proach is currently applied for the modeling of transmission
lines and cables [2]–[4], high-frequency transformer terminal
modeling [5], [6], and terminal equivalencing of components
and subnetworks, so-called frequency-dependent network
equivalents (FDNEs) [7], [8].

Traditionally, the approximation (“fitting”) with rational
functions has been carried out in the frequency domain, for
instance using vector fitting (VF) [9]. This domain is a nat-
ural choice since the components can in many instances be

Manuscript received March 16, 2010; revised July 02, 2010; accepted August
27, 2010. Date of publication November 09, 2010; date of current version De-
cember 27, 2010. The work was supported in part by the Norwegian Research
Council (PETROMAKS Programme) and in part by Compagnie Deutsch, FMC
Technologies, Framo, Norsk Hydro, Siemens, Statoil, Total, and Vetco Gray.
Paper no. TPWRD-00190-2010.

The authors are with SINTEF Energy Research, Trondheim N-7465 , Norway
(e-mail: andrea.ubolli@elkraft.ntnu.no; bjorn.gustavsen@sintef.no).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRD.2010.2080361

characterized only in the frequency domain. For instance, the
series impedance parameters of a transmission line can only be
computed in the frequency domain, and terminal characteriza-
tion of components by measurement is usually most accurately
performed by frequency sweep measurements.

It is, however, also possible to characterize components and
subsystems in other domains. One alternative is to transform
the -domain data into the -domain, thereby allowing to iden-
tify an autoregressive moving average (ARMA) model via the
model’s discrete differential equation. That approach has been
applied for the purpose of traveling wave-based transmission
line modeling [4].

The ARMA modeling approach is also directly applicable to
modeling from simulated time-domain responses, which is the
topic of this paper. This approach has been applied to FDNE
modeling in [10], [11]. In [11], the approach was further refined
by utilizing the delay effects of transmission lines for achieving
a reduced-order FDNE model via the resulting sparsity in the
ARMA model. Reference [12] gives a discussion of accuracy as-
pects regarding -domain implementations in EMTP-type pro-
grams.

In recent years, two alternative approaches have been intro-
duced in the field of high-speed electronics modeling: vector
fitting in the -domain (ZD-VF) [13] and in the time domain
(TD-VF) [14]. ZD-VF is essentially an application of VF in the

-domain rather than the -domain. Its application requires to
convert the time-domain responses into the -domain. TD-VF
is a formulation of VF in the time domain via convolution.

In this paper we apply these new methods for use with
power systems modeling. We compare ARMA, ZD-VF and
TD-VF when applied to rational approximation of time-do-
main responses obtained via an Electromagnetic Transients
Program (EMTP)-type circuit simulator [1]. The objective is
to obtain a rational model in the continuous -domain so that
it can later be applied in simulations with alternative time step
lengths. We first give a thorough description of the approaches
and how to apply them in the context of time-domain fitting.
They are next applied to the modeling of a sub-network using
a high-order model. The applicability of the approaches is
compared regarding accuracy, robustness, and efficiency. The
effect of using truncated time responses is also investigated. In
this work we deal with single-port systems but we also include
one preliminary result for multiport systems (Section VIII).

II. RATIONAL MODEL

We consider the time-domain impulse response of a
linear time invariant (LTI) system. Let and denote

0885-8977/$26.00 © 2010 IEEE
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the excitation and output response, respectively. Their relation
is in the time domain defined by convolution (1) and in the
frequency domain by multiplication (2).

(1)

(2)

It is assumed that has the rational form (3a), where
and are the poles, residues, and constant

term to be identified. The time-domain counterpart is given by
(3b). is the model order and is the Dirac’s delta function

(3a)

(3b)

III. PRELIMINARIES ON -TRANSFORM

A. Definition

Given a discrete sequence of time-domain samples, the
expression of the unilateral, or one-sided -transform is given
by [15], [16]

(4)

The definition of the -variable is related to the -variable by
(5), where is the sampling time. This transformation maps
the entire left-hand -plane inside the unit circle in the -domain
[17]

(5)

B. Bilinear Transformation

In practice, the exact mapping (5) is often replaced with the
bilinear transformation (6), also known as the Tustin approxima-
tion. This transformation preserves the magnitude of the exact
mapping but leads to incorrect phase information. A point lying
on the unit circle in the -domain corresponding to the fre-
quency becomes (7) when mapped back on the imaginary
axis in the -domain [12]

(6)

(7)

C. Chirp -Transform Algorithm (CZT)

The actual computation of the -transform from time-domain
samples can be done in an efficient way using the Chirp -trans-
form (CZT) algorithm [18]. Given a discrete sequence

, this algorithm evaluates the -transform of the se-
quence under investigation on a spiral in the -domain complex
plane, (8), with and given by

(8)

TABLE I
MAPPING TERMS FROM �-DOMAIN TO �-DOMAIN

(9)

In our case, the spiral is part of the circumference of a unitary
ray in the -domain. Accordingly, and become unity.

Introducing (8) in (4), we obtain, after manipulating the
summation and defining new other two variables and (10),
the final result

(10)

(11)

Thus, the computation of the -transform can be formulated
as a discrete convolution product which can be efficiently com-
puted using fast Fourier transform (FFT).

D. Relation Between Rational Functions in -Domain and
-Domain

A rational function can be expressed in the -domain. In the
case of simple pole-residue fractions, we obtain

(12)

Using the bilinear transformation (6), the model (12) can
be directly converted into the -domain (3a) (and vice-versa).
Inserting the bilinear transformation into (12) we get for the
transfer function in the -domain

(13)

From (13), the mapping of model parameters becomes as
shown in Table I. (The mapping from the -domain to -do-
main is shown in Table II). The bilinear transformation also im-
plies trapezoidal integration of the first-order differential equa-
tion corresponding to the state-space model (3a) [19].

IV. ARMA MODEL

A. Formulation in Time Domain and -Domain

The convolution (1) can be represented by a linear difference
equation with constant coefficients. With a fixed time step, we
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TABLE II
MAPPING TERMS FROM �-DOMAIN TO �-DOMAIN

get for an th-order model the relation [15]–[17]

(14)

where is the time at the th step while and are con-
stant coefficients. Equation (14) describes a long convolution
where the current output response depends on the current
excitation as well as the past excitations and output re-
sponses.

By applying the -transform to (14) and using the delay op-
erator (5), we obtain

(15)

From (15), we obtain the resulting -domain rational transfer
function (16), also known as the ARMA model. The actual
computation of the model’s parameters is done by solving
(14) as a linear overdetermined system, more about this is in
Section IV-B

(16)

The resulting discrete difference (14) characterizes a relation
between the output and excitation of the system under investi-
gation, thus allowing us to replace it with a model formed with
(14) and then to simulate it.

B. Identification of ARMA Coefficients

In order to identify coefficients and of the transfer func-
tion , or, equivalently, the coefficients of the linear differ-
ence equation (14), we write (14) for each time-domain sample

which gives [11] the following overdetermined
linear system:

...
(17)

Vectors and collect the set of coefficients to be determined
while and are known matrices that assemble the output
response and excitation evaluated at each time step according to
(14). Equation (17) is solved in the least-squares (LS) sense.

C. Conversion of ARMA Model to -Domain

The ARMA model can be made applicable for an arbitrary
time step by converting it into the continuous -domain. For
that purpose, we use the Matlab function residue.m for trans-
forming the polynomial form (16) into the pole-residue form
(12). Finally, the coefficients of the rational model (12) in the

-domain are transformed into the -domain (3a) by the expres-
sions in Table I. Note, however, that in the case of high-order
approximations, the conversion from the polynomial form (16)
to the pole-residue form (12) can lead to errors in the model’s
response [20].

V. -DOMAIN VECTOR FITTING (ZD-VF)

A. Formulation of Vector Fitting in -Domain

The frequency-domain VF algorithm [9] (FD-VF) can be di-
rectly applied also to the -domain transfer functions, giving
poles and residues of a -domain rational function (12)
that best fits the original data [13]. The given transfer
function , the starting point, is conveniently speci-
fied on the boundary of the -domain unitary circle.

As with FD-VF, the response data is multiplied (18)
with an unknown rational scaling function , where the poles
of and the right side are assigned a set of initial values .
Equation (18) is solved as a linear LS problem. It can then be
shown [9] that the zeros of must be a good approxima-
tion for the poles of . By repeating the procedure with the
new poles replacing the initial poles, the poles will approach the
correct pole set (12). Any unstable pole (outside the -do-
main unitary circle) is enforced to be stable by flipping inside
the unit circle [13]. The initial poles are chosen inside the
stable -domain unit circle and possibly close to its boundary.
In practice, one may specify the poles in the -domain as in [9]
(complex conjugate, small real parts, and distributed along the
imaginary axis), and then transform the poles into the -domain
by (6)

(18)
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Finally, with the final pole set , the residues are com-
puted by solving (18) with set to unity.

B. -Transfer Function from Time-Domain Responses

In our case, the inputs are the time-domain responses ob-
tained by a circuit simulator. We apply an approximation (19) to
the Dirac’s delta function, thereby obtaining an approximation

of the impulse transfer function

(19)

Using the CZT algorithm (Section III-C), the impulse re-
sponse in the -domain is directly obtained. The points

, on which we evaluate the -transform of
, are chosen on a part of the unitary circle defined by an

angle between where

(20)

and is the highest frequency of interest in the (discrete)
time-domain data. When applied with the CZT transformation
(11), we use in (9) and

.
At this point, we can finally apply the ZD-VF in order to

estimate poles and residues of the transfer function (12).

C. Recovering -Domain Rational Function

Once the transfer function has been expressed as a ra-
tional fraction expansion in the -domain (12), the equivalent
poles and residues in the -domain are recovered by the expres-
sions in Table I.

VI. TIME-DOMAIN VECTOR FITTING (TD-VF)

A. Formulation in the Frequency Domain

The FD-VF [9] can also be applied to time-domain responses
via convolution, as shown in [14]. This is achieved by first intro-
ducing the input and output in the pole identification
step for VF as shown in (21), where is a set of initial
poles

(21)

Reordering (21) and simplifying the notation gives

(22)

with

(23)

(24)

B. Formulation in Time Domain (TD-VF)

In our application, and are given in the time domain.
Applying the inverse Laplace operator to both sides of (22) gives
[14]

(25)

where the definition of and depends on the ap-
plied numerical integration method. In order to solve for the un-
knowns and , we write (25) for each sample

, where is the time step. This gives an overdeter-
mined linear system that is solved in the LS sense. From the ob-
tained , the new poles are estimated as the zeros of

[9]. This pole-relocation procedure is repeated iteratively
where the calculated poles are used as new initial poles.

Once the final poles have been extracted, the residues
are calculated by writing (26) as an overdetermined system and
solving for the unknowns

(26)

C. Numerical Integration

Alternative ways can be used for obtaining and
from (23) and (24). We show the result only for the derivation of

because the procedure for follows the same steps.
Equation (23) can be rewritten as (27) which can be brought

into the time domain by the differential equation (28)

(27)

(28)

Introducing discretization permits solving (28) using a
numerical integration method. In the original formulation of
TD-VF [14], the “recursive convolution” [21] was adopted.
However, available circuit simulators are usually based on
other integration methods (e.g., trapezoidal integration) and
so a mismatch exists between the integration scheme of the
circuit solver and TD-VF. In what follows, we show how to
incorporate the trapezoidal integration method into TD-VF.

The trapezoidal method implies the following discretization
(29) of (28):

(29)

Thus, it is straightforward to write the discrete solution of (28)
on the form (30) with coefficients given by (31)

(30)

(31)
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Fig. 1. Single-phase power system.

Fig. 2. Simulated current response (PSCAD).

VII. EXAMPLE: FREQUENCY-DEPENDENT NETWORK

EQUIVALENT (FDNE)

A. Problem Statement

We consider the single-phase power system in Fig. 1 which
is composed of an underground cable and three identical over-
head lines. We refer to [22] for the geometry of the single-core
underground cable and the overhead line.

In what follows, we apply all methods for identifying a ra-
tional model (3a) of the admittance transfer function of
the system as seen from the voltage source in Fig. 1. The fol-
lowing notation is adopted:

1) ARMA dde: discrete difference equation model obtained
by solving (17), and applicable for the same time-step of
the original data;

2) ARMA pfe: model obtained by converting the discrete dif-
ference equation into the -domain [partial fraction expan-
sion form (3a)];

3) ZD-VF: model obtained by applying the -domain vector
fitting algorithm.

4) TD-VF: model obtained by applying the time-domain
vector fitting algorithm.

With all approaches, the linear LS problems [(17), (18), (25),
(26)] are solved by using the backslash operator (“ ”) in Matlab.

The current response due to a unit step voltage application is
shown in Fig. 2. For the purpose of model extraction, we will
use two alternative window lengths: 1 ms and 10 ms.

B. Computation of Time-Domain Responses

Using the trapezoidal-based circuit solver PSCAD, we apply
two different voltage excitations to the network shown in

Fig. 3. Current response. Original PSCAD simulation and simulation by
models extracted by using TD-VF, ARMA dde, and ZD-VF. � � 20.

Fig. 1 with a fixed time step of 1 s and record the current re-
sponse flowing into the network. The first excitation is a unit
step while the second is an approximation of the Dirac’s delta
function (19). The first excitation/response is used as input data
for TD-VF and ARMA dde/pfe while the second excitation/re-
sponse is used with ZD-VF.

C. Base Case Results

The TD-VF and ZD-VF approaches are applied with 30 pole
relocating iterations, using a time step length of 1 s and a
window length 1 ms (1000 samples). All approaches (including
ARMA) are applied with a fitting order 20. With ZD-VF,
the mapping from the time domain to -domain is accomplished
using 5000 samples to achieve a high resolution, and we use
an angle of 150 . The quality of the extracted models is then
compared by applying the model in a numerical simulation with
step voltage excitation. That simulation is done using an EMTP-
like simulation in Matlab based on trapezoidal integration [23],
again with a 1- s time step.

The results are shown in Fig. 3, comparing the original
PSCAD simulation of the input current with the one ob-
tained using the respective models. It is seen that only the model
extracted by TD-VF gives a good match with the original data.
Both the ARMA dde and ZD-VF models give poor results.
(The result by ARMA pfe is similar to that of ARMA dde.)

Fig. 4 shows the simulated voltage responses when the
voltage source is replaced by a unit step current source. Again,
the result by TD-VF gives an accurate result while the other
approaches lead to a highly inaccurate result.

As a final comparison, the admittance transfer functions are
plotted in the frequency domain, see Fig. 5 and an expanded
view in Fig. 6. The responses are compared with the admittance
obtained by PSCAD directly in the frequency domain. It can be
seen that TD-VF attains the best result in the frequency band
(1 kHz–1 MHz) that is associated with the time window used
for model extraction (1 s–1 ms). Outside this window, the ac-
curacy deteriorates due to a lack of information in the time-do-
main responses. The other approaches (ARMA, ZD-VF) give
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Fig. 4. Voltage response. Original PSCAD simulation and simulation by
models extracted by using TD-VF, ARMA dde, and ZD-VF. � � 20.

Fig. 5. Frequency-domain impulse response. Original PSCAD model and
models extracted by TD-VF, ARMA pfe and ZD-VF.

Fig. 6. Expanded view of Fig. 5 (inset box).

substantial deviations also within the (1 kHz–1 MHz) frequency
band, consistent with the result in Fig. 3.

Fig. 7. Error curves for the identification of ARMA coefficients (17) with al-
ternative model orders � � 20, 60, 100, 200.

D. ARMA: Further Results

In this section, we further elaborate on the difficulties with
the ARMA modeling procedure.

Fig. 7 shows the error in the solution of the linear problem
(17), for different fitting orders. Since the right side in (17) is
directly equal to the output response (which, in our case, is the
current response due to a step voltage excitation), the traces in
Fig. 7 directly correspond to the model error with the given ex-
citation. All models give an error smaller than , and the
error is close to machine precision for the first time samples
where is the model order. The error is reduced with increasing
fitting order.

Fig. 8 shows the error of the ARMA models in Fig. 7 when
applied in the simulation (current response due to a step voltage
excitation). The deviations are now much higher than in Fig. 7.
Only the 200-order approximation gives a highly accurate re-
sult. The reason for the increased error can be understood as
follows. When building the linear problem (17), the output (cur-
rent response) is used for the building of the system matrix.
When applying the model in a simulation, the output response
is slightly perturbed by the model inaccuracies. That way, the
model perturbs itself, leading to a deviation that increases with
time.

Even when using very high orders, the performance of the
ARMA model is often unacceptable. Fig. 9 shows an example
where the ARMA model is applied with an order of 180. It is ob-
served that the simulation using ARMA gives very good agree-
ment until 0.6 ms, but then becomes unstable. The reason for
the unstable result can be explained by unstable poles. Unlike
the TD-VF and ZD-VF approaches, the ARMA method cannot
enforce stable poles by construction.

In order to make the ARMA model applicable with arbi-
trary time steps, it can be converted into a rational model using
the procedure described in Section IV-C. The simulation result
using the “rational” ARMA model is shown in Fig. 10 with alter-
native fitting orders, also with a 1- s time step. It is seen that all
models produce unacceptable results. The reason for the prob-
lems is that the conversion from the discrete ARMA model to
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Fig. 8. Error curves for simulated current response using ARMA dde models
of alternative orders � � 20, 60, 100, 200.

Fig. 9. Comparison between the original current obtained with PSCAD and
simulated unstable ARMA dde model with order 180.

Fig. 10. Comparison between the original current obtained with PSCAD and
simulated ARMA pfe models with alternative fitting orders:� � 20, 100, 130.

the rational ARMA model on the partial fraction expansion form
(12) is unreliable due to numerical ill-conditioning [20].

Fig. 11. Comparison between a �-transfer function of a non-truncated (10 ms)
signal and truncated signal (1 ms).

Fig. 12. Fitting error between the simulated �-domain vector fitting applied to
PSCAD data obtained for four different window time lengths. � � 40.

E. ZD-VF: Further Results

The errors in the simulation by ZD-VF (Fig. 3) are mainly
due to the truncated nature of the time signal used as the
input for the modeling process. The truncation of leads to
inaccurate computation of the -domain response. The error is
greatly reduced by increasing the length of the time window
until the response has decayed to zero.

Fig. 11 shows the magnitude and phase angle of the -domain
response used as input for ZD-VF, when the simulation end is at
either 1 ms (used in this study) or 10 ms. It can be seen that with
the 1-ms window, oscillations result in the calculated response
that are not observable with the 10-ms window.

Fig. 12 shows the deviation of the ZD-VF model with alter-
native lengths of the time window. It is seen that the error de-
creases with an increasing time window.

F. TD-VF: Further Results

The TD-VF was in Section VII-C found to produce an excel-
lent result with a low-order approximation , both for
a step voltage excitation and a step current excitation. Fig. 13
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Fig. 13. Error curves for simulated current response using TD-VF models of
alternative orders � � 10, 20, 40, 60.

shows the deviation of the simulation result by TD-VF for al-
ternative fitting orders, based on a 10-ms time window for the
fitting process. It is observed that the error is consistently re-
duced with increasing fitting orders. The deviation with
40 is directly comparable with the result for ZD-VF in Fig. 12.
It can be seen that TD-VF gives a substantially lower error. This
result can be related to the usage of the bilinear transformation
for mapping the model from the -domain to the -domain. In
addition, a small truncation effect will be present since the re-
sponse is not entirely zero at 10 ms (0.0098 A).

We next demonstrate the applicability of the TD-VF model
for use with alternative time step lenghts. A 20th-order model
is extracted by TD-VF based on a PSCAD simulation of the
voltage excitation response, assuming a 1- s time step and 1-ms
time window.

Fig. 14 compares the simulation result by the TD-VF model
and PSCAD when employing a s time step in both
simulations. A noticeable deviation appears between all three
traces. The reason for the deviations can be explained as follows.

1) The change in the PSCAD simulation result is mainly
due to increased interpolation errors in the traveling-wave
model. This type of error results when the time delay is
not an integer multiple of while at the same is not
much bigger than . In this case, is 28.1 s for the
cable and 33.5 s for each of the overhead lines.

2) The reason for the error in the simulation result by TD-VF
is mainly a result of the integration method. In the sim-
ulation by TD-VF, trapezoidal integration was employed
while the traveling-wave model in PSCAD is based on re-
cursive convolution [21]. Therefore, the nature of the inte-
gration errors is different.

Fig. 15 shows the same result as in Fig. 14 when has been
increased to 5.62 s and the trapezoidal integration method has
been replaced with recursive convolution in the simulation of
the TD-VF model. With these modifications, all approaches give
virtually the same result. Note that with s, of the
cable and line is, respectively, 5.0 and 6.0 times bigger than .

In general, however, the model extracted by TD-VF cannot
avoid that the integration method causes errors in the simula-

Fig. 14. Comparison between PSCAD responses (1�s and 5�s) and simulated
TD-VF model (5 �s). � � 20.

Fig. 15. Comparison between PSCAD responses (1 �s and 5.62 �s) and sim-
ulated TD-VF model (5.62 �s).� � ��. TD-VF model simulated by recursive
convolution.

tion result. Therefore, the accuracy will often deteriorate when
increasing the time step.

We have also observed that the simple pole flipping scheme
[9] is not always successful for TD-VF since the VF iteration
may not converge. A simple remedy is to extend the length of
the time window to capture a full period of the lowest frequency
component observable in the data.

G. Results With Modified Circuit

We now modify the network in Fig. 1 by reducing the induc-
tance from 200 to 2 H. As a result, the current response be-
comes much less smooth. When applying the same time step (1

s) and window length (1 ms) as before for the model extraction
process, the ARMA and ZD-VF models all fail to produce an ac-
ceptable simulation result. The TD-VF approach still produces
a sufficiently accurate result, although a higher order is now re-
quired in order to capture the increased frequency content.

Fig. 16 shows the result obtained with TD-VF using 80 poles.
The extracted model gives a simulation result matching the orig-
inal PSCAD data quite accurately at the given time samples. The
same plot also shows the analytical response of the model with
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Fig. 16. Comparison between the original current response by PSCAD and
response by TD-VF model: analytical and simulation. � � 80.

TABLE III
COMPUTATION TIME FOR A SINGLE TD-VF ITERATION (in milliseconds)

a very fine time resolution. That response is highly oscillatory
and will eventually be captured by the model when reducing the
time step in the simulation (i.e., below 1 s). The oscillations
occur because the fitting process gives a bandlimited model that
fails to capture the frequency components beyond 1 Mz, thereby
giving Gibbs-like oscillations in the response.

H. Complexity Analysis

We consider now some aspects regarding timing require-
ments for the described methods.

With each of these approaches—ARMA, TD-VF and
ZD-VF—a linear system has to be solved in the least-squares
sense. The system matrix size is the same for all methods, being

, where is the order and is the number
of time-domain (or -domain) samples. It is found that most
of the CPU time is spent in the solution of the linear system
equation. This operation is completed a single time for ARMA
and repeatedly for TD-VF and ZD-VF. In addition, in each
iteration of TD-VF, another operations are needed for
establishing the coefficients of the system matrix. That time,
however, is negligible with high-order approximations, see
Table III. It can thus be concluded that ARMA is faster than the
other approaches since pole relocations are not needed. In the
examples, we used 30 iterations with ZD-VF and TD-VF, but,
in practice, one will normally use much fewer iterations, often
as few as 3–5 iterations.

VIII. MULTIPHASE EXAMPLE

TD-VF is also applicable to multiport systems. For illustra-
tion, we apply the approach to a subnetwork of five three-phase

Fig. 17. Three-phase power system. The length of the lines is given in kilome-
ters.

Fig. 18. Geometry of the overhead lines for the power system of Fig. 17.

Fig. 19. Comparison between original current responses (� and � ) by PSCAD
(0.1 �s) and simulated TD-VF model (0.1 �s). � � 40.

overhead lines having different line lengths but the same geom-
etry, see Figs. 17 and 18.

Similar to the previous example, we apply the circuit solver
PSCAD in order to compute the time-domain responses (phase
currents flowing into the network) using a step voltage as ex-
citation. The voltage is applied to phase with phases and
grounded. We use a time step of 0.1 s and a window length of
0.3 ms. The TD-VF approach is then applied using 30 iterations
with a fitting order 40. Fig. 19 compares the original re-
sponse with the one simulated using the extracted model. The
result is shown for the current in phase and . It can be seen
that a highly accurate result is achieved.

We remark that in this modeling/simulation, we have repre-
sented the subnetwork by one diagonal element and one
offdiagonal element . We are currently extending the mod-
eling capability to handle vectors of responses so as to arrive at
a complete, coupled model with a common poles set for all ma-
trix elements.
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IX. CONCLUSION

In this work we have compared alternative methods for ob-
taining a rational approximation from simulated time-domain
responses. These approaches are based on ARMA, ZD-VF, and
TD-VF.

ARMA, which is based on the discrete difference equation,
gives a model which is applicable only with the same time step
as the one in the given time-domain data. The approach leads
to higher model orders than the alternative approaches, and it
cannot guarantee stable poles. In this work we introduced a pro-
cedure for converting the ARMA model into a general rational
model, making it applicable to general time steps. That approach
was found to suffer from inaccurate results due to numerical ro-
bustness problems in the conversion process from polynomial
form to pole-residue form.

ZD-VF is not directly applicable to time-domain responses. It
requires an initial transformation of the time-domain responses
into the -domain. The resulting -domain response becomes
corrupted when applied to time-domain responses that are not
sufficiently decayed to zero within the time window. This cor-
ruption results in an inaccurate model. Also, the final conver-
sion of the -domain rational model back to the continuous time
domain will introduce some error due to the application of the
bilinear transformation. ZD-VF has the advantage over ARMA
that it is robust and gives a model with guaranteed stable poles.

TD-VF is the best option for rational modeling from time-do-
main responses. It allows to use truncated responses, it requires
a much lower model order than ARMA, it gives a model with
guaranteed stable poles, and it is robust. The obtained model can
be used with an alternative time step length as long as it stays
within the limits implied by the step length and window length
of the given time data series, and the limitations implied by the
numerical integration method.
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