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A Half-Size Singularity Test Matrix for Fast and
Reliable Passivity Assessment of Rational Models
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Abstract—One major difficulty in the rational modeling of
linear systems is that the obtained model can be nonpassive,
thereby leading to unstable simulations. The model’s passivity
properties are usually assessed by computing the eigenvalues of a
Hamiltonian matrix, which is derived from the model parameters.
The purely imaginary eigenvalues represent crossover frequencies
where the model’s conductance matrix is singular, allowing to
pinpoint frequency intervals of passivity violations. Unfortunately,
the eigenvalue computation time can be excessive for large models.
Also, the test applies only to symmetrical models, and the testing
is made difficult by numerical noise in the extracted eigenvalues.
In this paper a new (non-Hamiltonian) half-size singularity test
matrix is derived for use with admittance parameter state-space
models, which overcomes these shortcomings. It gives a com-
putational speedup by a factor of eight; it is applicable to both
symmetric and unsymmetrical models; and it produces noiseless
eigenvalues for reliable passivity assessment.

Index Terms—Admittance parameters, Hamiltonian matrix,
macromodel, passivity, passivity checking, passivity enforcement,
rational model, singularity test matrix, state-space model.

I. INTRODUCTION

REQUENCY-DEPENDENT modeling of linear devices
F and systems is widely applied in the technical fields of
power systems, microwave systems, and high-speed electronic
systems. The modeling involves the approximation of charac-
teristic responses in either the frequency domain or the time
domain. The end result is a model based on rational functions,
thereby allowing efficient time domain simulations by classical
discretization methods or recursive convolution [1]. Although
it is easy to obtain a quite accurate model having stable poles
only (e.g., by using vector fitting [2] with recent advancements
[3]1-[8]), the obtained model may still result in an unstable sim-
ulation. The stability problem is related to passivity violations
(i.e., the model generates energy).
The problem of nonpassive models can be mitigated by sub-
jecting the model to a passivity enforcement procedure, where
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the model parameters are perturbed in a postprocessing step
[9]-[14]. These approaches require to assess the model’s pas-
sivity (i.e., to decide if the model is nonpassive and to char-
acterize the violation). In the frequency domain, the passivity
characteristics of admittance parameter models are easily as-
sessed by sweeping along frequency for the eigenvalues of the
terminal conductance matrix G(w), since negative eigenvalues
imply passivity violations [9], [15]. This approach has the draw-
back that passivity violations can be missed since the viola-
tions can occur between two frequency samples. It has there-
fore become accepted practice to assess passivity via a partic-
ular Hamiltonian matrix, which is calculated directly from the
parameters of the rational model [10], [11]. In principle, this per-
mits exact calculation of all frequencies where an eigenvalue of
G(w) changes sign, without the need for sweeping.

A disadvantage of this Hamiltonian approach is that the time
needed for computing the eigenvalues can be excessive in the
case of large models. It has therefore been proposed to save time
by calculating only the (few) purely imaginary eigenvalues via a
multishift restarted Arnoldi process [16], [17], but a reliable im-
plementation remains a difficult task. A second disadvantage of
the Hamiltonian matrix approach is that it only applies to models
that are symmetrical (e.g., a pole-residue model), while in re-
ality one also needs to assess passivity for (slightly) unsymmet-
rical models, for instance models obtained by fitting columns
of a terminal admittance matrix Y (w). A third disadvantage is
that eigenvalues corresponding to crossover frequencies are not
exactly imaginary as they are associated with a small real part
(noise). In practice, this requires to use a threshold approach to
capture all potential crossover frequencies, followed by a final
verification using G(w).

Since the passivity assessment using the Hamiltonian ap-
proach can dominate the total computation time for a passivity
enforcement procedure, there is a strong need for improving the
computational efficiency. There is also a need for extending its
applicability to unsymmetrical models, and to avoid the noise
problem in the real part of the eigenvalues. A solution to all
these issues is provided in this paper.

The paper is organized as follows. Section II reviews the
existing approaches for passivity assessment: sweeping and
Hamiltonian matrix eigenvalues. Section III derives a new
matrix for passivity assessment, starting from the passivity
criterion associated with the conductance matrix. The proposed
singularity test matrix S has only half the size of the Hamil-
tonian, and no assumption of symmetry is made. Section IV
shows the relation between S and the traditional Hamiltonian
matrix. Sections V through VII compare the performance of the
new method with the Hamiltonian approach for some practical
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examples, focusing on computational speed, the implications
of model asymmetry, and eigenvalue noise and its implications
for passivity assessment.

II. PASSIVITY ASSESSMENT

In this section we review some of the main procedures cur-
rently in use for passivity assessment. We consider the case of
a linear component or system that is characterized by its admit-
tance matrix Y, relating terminal voltages v and currents i

i(jw) =Y (jw)v(jw). (1)

The admittance Y is a symmetric matrix, satisfying the sym-
metry property (2) and the conjugacy property (3), where the
bar indicates conjugate

Y =Y" (2)
Y(jw) =Y (—jw). 3)

It is assumed that a rational model for Y has been identified
which satisfies (2) and (3). This can be easily achieved by fitting
the elements of Y using the pole relocating algorithm known
as vector fitting (VF) [2]. This leads to a pole-residue model
(4) which can be expanded into a model in standard state-space
form (5). In order to reduce the computation time of the fitting
process, one may also choose to fit the columns of Y with pri-
vate pole sets. This columnwise model has the same structure
as the one obtained via the pole-residue model, but the terminal
admittance Y (jw) is slightly unsymmetrical

R
Y (jw) = nz::lm +D (4)
Y (jw) 2 C(jwl — A)"'B + D. (5)

Passivity entails that a component cannot generate power, at
whatever terminal conditions. This implies that the eigenvalues
of the real part of Y (conductance G) are positive for all fre-
quencies [15]. The passivity criterion (6) (where eig(A ) denotes
the array of the eigenvalues of matrix A) is based on the expres-
sion of the total real power entering the device at its terminals
[9] and can be used for assessing bands of passivity violations
by sweeping over discrete frequencies

eig (Re {Y(jw)} = eig (G(jw)) > 0. (6)

Strictly speaking, the test (6) applies only for symmetrical
models but in this paper it will be also used for characterizing
slightly unsymmetrical models.

Passivity can also be assessed directly from the state-space
model via the eigenvalues of the Hamiltonian matrix (7) [18].
Any purely imaginary eigenvalue of M corresponds to a fre-
quency where an eigenvalue of G crosses zero (i.e., where G
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is singular). This enables precise identification of bands of pas-
sivity violations, without the need for sweeping. We note that
the size of M is twice that of A

A-B(D+D7)"C

_ B(D+D7T) BT
~| -cT(D+D7)"IC

—AT+CT(D+DT)_1BT
@]
It is remarked that a Hamiltonian matrix A is any matrix that
satisfies the relation

M

KA +ATK =0 8)
where
0 I
K = [_1 0] . ©)
III. SINGULARITY TEST MATRIX
A. Theory

We consider the state equations

jwx =Ax + Bu
y =Cx + Du.

(10a)
(10b)

A, B, C, and D are assumed to be real (via a similarity trans-
formation). This is essential for the derivation and computation-
ally convenient as shown in Section III-C. We also note that
the symmetry of Y of (5) has no role in the derivations to be
presented, thereby making the result applicable for unsymmet-
rical models as long as the passivity criterion (6) is sufficiently
accurate.

In what follows, we focus analytically on the conductance
matrix G:

1 . )
G =5 (Y(jw) +Y(—jw)). (11)
For Y (—jw), we have the state equations
—jwX =AX 4+ Bu (12a)
y =CXx + Du. (12b)
The real part of the output can be written as
1 -
g=5(+y) (13)
Inserting (10b) and (12b) into (13) gives
1
g= §C<X+i)+Du. (14)

G is singular for inputs u in (14) that make g = Gu =
0. Such an input u corresponds to the (real) eigenvector of G
associated with its zero eigenvalue. This gives

u= _%D—IC(HE). (15)
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Inserting (15) into (10a) gives

1
jwx = Ax — §F(x +X) (16)
where
F=BD'C. (17)
We next split x into its real and complex part
x =x +jx" (18)
which gives (16)
jw(x' +jx") = A(x' + jx") - FX'. (19)
For the real and imaginary parts of (19), we get
—wx' +AX" =0 (20a)
(F - A)x' —wx” =0. (20b)

Eliminating either x” or x’ from (20) gives the eigenvalue
problems

[A(F - A) —w’I]x' =0
[(F—A)A - w’I]x" =0.

(21a)
21b)

In (21), w? is the eigenvalue while x’ and x”’ are the right
eigenvectors of the respective eigenvalue problems (21a) and
(21b). From this, it follows that the frequencies w that produce
a singular G can be calculated as the positive square root of the
(positive real) eigenvalues of either matrix S and T

(22a)
(22b)

The purely real elements in the set of w directly correspond
to the crossover frequencies of the eigenvalues of G. In the re-
mainder of this study, we will be assessing passivity using S,
which we will call the singularity matrix. [Note that the eigen-
values of S and T are identical, since for any two unsymmet-
rical complex square matrices A and B are of equal dimension,
we have eig(AB) = eig(BA) [19]. Here, the proof of this is
simply that each equation in (21) contains the same eigenvalues
as (20)]. After inserting F from (17), we obtain the detailed re-
sult

S=A(BD 'C-A)
T=(BD'C—-A)A.

(23a)
(23b)

Theorem: The singularity test matrix S gives, via the subset
of its positive-real eigenvalues w?, the frequencies w where
G becomes singular and these are the boundaries of passivity
violations.
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B. Relation Between the Singularity Matrix and Zeros of G

In this section, we show that the eigenvalues of the singularity
matrix S are equal to the zeros of G(w).
The state (10a) can be written as

jwx'+ jx") = A(x' + jx") + Bu. (24)

Taking the real and imaginary part of (24) gives
wx” + Ax' = — Bu (25a)
wx’ = Ax". (25b)

Substituting Ax” from (25b) into (25a) (which has been pre-
multiplied by A) gives, together with (14)

(A2 +wI)x' = — ABu (262)
g =Cx' + Du. (26b)
Solving (26a) for x’ and substituting into (26b) gives
g=(D-C(A” +w’I)"AB) u. 27)
This shows that the conductance matrix is
G=D-C(A*+w’I)"'AB (28)
which is of a remarkably simple closed form.
Interchanging in (26) input u and output g gives
(A(F-A)-w’I)x =ABD ™ 'g (29a)

u=-D!Cx'+D g (29b)

where we have again introduced (17).
Solving (29a) for x’ and substituting into (29b) we get, noting
thatu = G~ 1g

G '=D'-D 'C(A(F-A)-w’)" ABD"". (30)

The inspection of (30) shows that the poles of G~ are given
by the “kernel” A(F — A), which is precisely the singularity
matrix S of (22a). Consequently, the singularity matrix S of
(22a) gives the zeros of G.

C. Implementation Issues

As mentioned before, it is desirable to have the state-space
model converted into a real form (via a similarity transforma-
tion; see Appendix). This has the following advantages for an
implementation in Matlab [20].

1) With a real S, the eigenvalue computation is substantially
faster than for a complex S. In Matlab, the speedup is by a
factor of four.

2) With a real S, the eigenvalues corresponding to crossover
frequencies of G(w) are purely real. With a complex S,
they would be associated with numerical noise in the imag-
inary part.
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IV. RELATION WITH THE HAMILTONIAN MATRIX

In order to see the relation with the traditional Hamiltonian
matrix M (7), we also consider the state equation (12a) for
Y (—jw). Substituting (15) into (12a) gives

1
—jwX = AX ~ JF(x +X). 31)

Equation (31) is a homogenous equation in x and X, similarly
as (16). These two equations (16) and (31) define the eigenvalue
problem

A—1F — juwl
1
—3F

;F x 0
2 —
~A+ %F—ij} {—f} - M -

This defines the double-size Hamiltonian matrix

. A—1lF 1p
wo[A ] e

Note that inserting (17) for F gives exactly M of (7), when
the additional, not generally warranted, assumption C = B7 is
made. The same eigenvalues are, of course, also obtained with
C # BT, provided that the state space model defines a sym-
metrical Y (w) of appropriate state space realization. Therefore,
usage of M is only valid for symmetrical models, unlike M in
(33) and the half-size S in (23a).

Equation (31) is just the conjugate of (16) and therefore it rep-
resents redundant information. Indeed, the real and imaginary
parts of the two are the same. Therefore, in (32), the eigenvalues
jw of M from (33) come in pairs that are not independent. For
any positive real w, we also get its counterpart which is negative
real and in which we are not interested. Therefore, it is sufficient
to use only (16) and not (31), as we have done before.

V. EXAMPLE: POLE-RESIDUE MODELING

This example considers the wide-band modeling of a
250-MVA power transformer from a measured admittance
matrix. The measurements were made with respect to two of
the windings, thereby leading to a 6 x 6 Y (w) [21].

The admittance matrix was fitted by 160 pole-residue terms,
using VF [2] with relaxation [5]. The pole-residue model was
expanded into a state-space-model with an A-matrix of dimen-
sion 960 x 960. The rational approximation of Y (w) is shown
in Fig. 1 (36 matrix elements).

Using the eigenvalues of S, seven crossover frequencies were
detected for the six eigenvalues of G(w), see the left column in
Fig. 2. The same frequencies are found in the imaginary part of
M (right column) but they appear two times and they are associ-
ated with a small real part. In this case, the presence of a small
real part is of no consequence as the eigenvalue can be safely
deemed as purely imaginary. However, the double dimension of
M makes the eigenvalue computation about eight times slower,
needing as much as 66.6 s (Table I).

In Figs. 3 and 4 (expanded view), the calculated crossover
frequencies from S are shown by stars that are superimposed on
a plot of the eigenvalues of G(w). It is seen that the crossover
frequencies have been correctly identified.
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Admittance [S]

10 1 I 1 1 L
3 4 5 6 7
10 10 10 10 10
Angular frequency [Rad/sec]
Fig. 1. Frequency response of the rational model.

Jeig(S) eig(M)
1.6115e+007 5.3551e-009 +1.6115e+0071
1.3863e+007 5.3551e-009 -1.6115e+0071
1.3472e+007 4.7148e-008 +1.3863e+0071
1.3229e+007 4.7148e-008 -1.3863e+0071
1.3170e+007 -5.1223e-009 +1.3472e+0071
1.25857e+007 -5.1223e-009 -1.3472e+0071
1.2832e+007 -1.0664e-007 +1.322%9e+0071

-1.0664e-007 -1.3229e+0071
7.5554e-008 +1.3170e+0071
7.5554e-008 -1.3170e+0071

-5.1223e-009 +1.2857e+0071

-5.1223e-009 -1.2857e+0071

-5.5879e-009 +1.2832e+0071

-5.5879e-009 -1.2832e+0071

Fig. 2. Eigenvalues of S and M that correspond to singularities of G.

TABLE 1
TIME CONSUMPTION FOR EIGENVALUE COMPUTATION

Matrix Size CPU time for diagonalization [sec]
S 960 8.5
M 1920 66.6

VI. EXAMPLE: COLUMNWISE MODELING

We continue with the example in Section V, but this time,
we fit Y (w) with its columns (N = 140), thereby obtaining a
model with a private pole set for each column. The structure is
identical to the one obtained via pole-residue modeling (see the
Appendix), but the model’s Y is now slightly unsymmetrical
(eigenvalues not strictly real).

Using S, a total of 21 crossovers were predicted for the eigen-
values of G(w), while M resulted in 30 crossovers. A careful
comparison with the (real part) of eig(G) showed that the re-
sult by M is in error. This is clearly seen in Fig. 5 for a high-
frequency portion of the response. Here, a crossover at about
3.75E7 rad/s is missed out by the assessment using M. Fig. 6
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0.01

0.008
0.006
0.004

0.002

-0.002 -

-0.004

-0.006 -

-0.008

-0.01 . . : .
1 1.2 1.4 1.6 1.8 2

Angular frequency [Rad/sec] % 107

Fig. 3. Eigenvalues of G(w).

x10*

2 . i
1.25 13 1.35 14

Angular frequency [Rad/sec] ” 107

Fig. 4. Eigenvalues of G(w). Expanded view.

shows an expanded view of the local, negative peak around
1.23E7 rad/s. It is seen that the result obtained using M is in-
correct whereas the usage of S leads to the correct result.

In the plots, it appears that single eigenvalues become split
into two eigenvalues at certain frequencies. This result is due to
conjugate pairs that change into two real eigenvalues (the pair
of conjugate eigenvalues have identical real parts).

VII. EXAMPLE: NOISE PROBLEM WITH HAMILTONIAN MATRIX

In this example, we consider the 6 x 6 terminal admittance
matrix Y (w) of a three-phase overhead line, which is subjected
to pole-residue modeling by a common pole set. This is the same
line configuration as reported in [12].
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0.01
0.008 /

0.006 i,

/ \ *  eig(S)
s O eig(M) |1

0.004 f,

0002}

-0.002 +

-0.004 -

-0.006 - 1

-0.008 1

-0.01 : : :
1 15 2 25 3 35 4

Angular frequency [Rad/sec] % 107

Fig. 5. Real part of eigenvalues of G(w). High-frequency range.

0.01 T r T v -
*  eig(S)
0.008 O eig(M) |1

0.006 - _

0.004 - 1

0.002 | g e iy
o o :
-0.002 | 1 \:/ 1
-0.004 - .
-0.006 - .

-0.008 - 1

s 1 s s s

1.2301 1.2301 1.2302 1.2302 1.2303
Angular frequency [Rad/sec]

.01
1.23 1.2303

x107

Fig. 6. Real part of eigenvalues of G(w). High-frequency range, expanded
view.

Fig. 7 shows the eigenvalues of the Hamiltonian matrix M
(7), expressed in the form of the absolute value of the real part
divided by the imaginary part. The plot includes only one eigen-
value out of each conjugate pair and only eigenvalues with a
ratio smaller than unity are included. Thus, eigenvalues with a
very small ratio represent the “purely” imaginary eigenvalues.
However, from the plot it can be seen that there is no clear
cut-off between the nearly imaginary eigenvalues and the rest.
(A threshold value for correct passivity assessment would have
to lie in the narrow band between 1E — 5 and 3FE — 3.) This
makes it difficult to devise a fail-proof passivity assessment test
based on M alone.

On the other hand, usage of S still leads to purely real eigen-
values for the crossover frequencies of the eigenvalues of G.
Figs. 8 and 9 show the eigenvalues of G(w) together with the

Authorized licensed use limited to: Sintef. Downloaded on December 29, 2008 at 11:33 from IEEE Xplore. Restrictions apply.



350

10

107

107°

| Real part / Imag. part |

-15 : 3
0 50 100

10
Eigenvalue

Fig. 7. Eigenvalues of M.

x10”

400 600 800
Angular frequency [Rad/sec]

200 1000

Fig. 8. Eigenvalues of G(w). Low frequency range.

crossover frequencies calculated from S, again verifying the
correctness of the approach.

VIII. DISCUSSION

In the case of very large models, the computation of the eigen-
values of S can still be prohibitively long, since the computation
time increases cubically with the size of S. In such situations,
the usage of S could be combined with the procedures in [16]
and [17] which reduce computation time by calculating only the
(few) eigenvalues of interest.

The singularity test matrix S can also be applied for models
that have been obtained by fitting impedance matrices Z(w),
rather than admittance matrices. This follows since the passivity
criterion is now that the real part of Z(w) has positive eigen-
values.
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W : |

/
/ o

7.5 8 85 9
Angular frequency [Rad/sec] x10°

x10°

Fig. 9. Eigenvalues of G(w). High frequency range.

IX. CONCLUSIONS

This paper has introduced a new (non-Hamiltonian) singu-
larity test matrix for passivity assessment of admittance param-
eter state-space models.

1) The new test matrix S identifies via its eigenvalues, the

frequencies where the conductance matrix G is singular.
The singularities are also the zeros of G.

2) The square root of purely-real eigenvalues of S correspond
to frequencies where eigenvalues of G change sign (i.e.,
boundaries of passivity violations).

3) The computation of eigenvalues is about eight times faster
when using S instead of the traditional Hamiltonian matrix
M.

4) The test matrix S is applicable to both symmetric and un-
symmetrical models, unlike M which only applies to sym-
metric models.

5) The problem of numerical noise in the real part of the
eigenvalues of M does not exist with S, provided that a
real-only state-space model is used.

APPENDIX
CONVERSION OF POLE-RESIDUE MODEL
TO REAL-ONLY STATE SPACE MODEL

As was shown in [22], a pole-residue model (4) can be
brought to the form (34) by factorizing each term

'In> 1,

where I,, is an identity matrix of the same size as R,,. The
building of A, B, C from each contribution (34) is done as
shown in Fig. 10, withn = 3 and N = 4.

The columns in C and rows in B are rearranged to produce
the structure in Fig. 11. Each block now represents one column
of Y.

R - (34)

1 B 1
jw—am_ m JW — Qm
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1
|
R, " jo-a \\>.-, .-, I,
C e
(jol-A)™! B

Fig. 10. Contribution from the second term (m = 2) in (4).

(jQ)lcol - Acol)_l<
~".

c [ [ e

(jol—A)™! B

Fig. 11. Columnwise realization.

Itis assumed that the poles are arranged so that complex poles
appear in conjugate pairs on the diagonal. For each pair, the cor-
responding submatrices are modified (via a similarity transfor-
mation) into a real-only model as follows [23]:

+ | Re{a} Imf{a} ¢ — Relc e
A= [—Im{a} Re{a}] = [Re{c} Im{c}] (35)

b= 2Re{bT} 1 _[2bT
T | =2Im{bT}| T | 0T |~
The same transformation (35) and (36) also applies when
the state-space model has been obtained by columnwise fitting
of Y. In that case, however, the state-space model produces a

slightly unsymmetrical Y, since a different pole set will be ob-
tained for the different columns.

(36)
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