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Abstract 

Linear macromodels can be extracted from simulated or 
measured time domain responses using the Time Domain 
Vector Fitting (TD-VF) algorithm. In this paper we show that 
data preprocessing by means of a digital filter (FIR) can 
reduce the model order and avoid false oscillations in the 
model’s response. The procedure is demonstrated for the 
modeling of a cable from simulated data and for the modeling 
of power transformers from measurements. 

Introduction 
High speed electronic devices and complex power systems 

need an accurate representation of their frequency dependent 
effects for a reliable electromagnetic transient simulation [1]. 
Linear devices and subnetworks without excessive delay 
effects can be efficiently represented by lumped rational 
macromodels. The model can be identified starting from a set 
of responses given in the frequency domain or in the time 
domain that completely describes the terminal behavior of the 
device. The modeling can be performed by applying the 
Vector Fitting algorithm (VF) [2] to tabulated data in both the 
frequency domain (FD-VF) [2-5], time domain (TD-VF) [6] 
and even the discrete z-domain (ZD-VF) [7].  

In this work we are focusing on the extraction of rational 
models based on truncated time domain responses. When 
working with truncated responses, TD-VF has been found [8] 
to be superior to alternative methods such as ARMA and 
ZD-VF. The obtained model is next subjected to passivity 
enforcement in order to guarantee a stable simulation, for 
instance using approaches in [8-12].   

The time domain responses are often characterized by fast 
transitions and high-frequency oscillations that makes it 
difficult to extract an accurate model without usage of an 
excessive model order. In order to overcome these difficulties 
we introduce a numerical low pass filtering approach. The 
filter, which is implemented as a Finite Impulse Response 
(FIR) filter, is able to smooth out the high frequency content 
of the waveform, thereby enabling low-order models that 
capture the main behavioral information about the device. 
After a brief review of the TD-VF method we describe in 
detail the FIR implementation. Finally, we demonstrate the 
approach to two examples that consider simulated data (high 
voltage cable) and measured data (power transformer). 

Problem Statement 
We consider in this work the modeling of a linear time 

invariant (LTI) system characterized by time domain 
responses at its ports. For simplicity, we show only results for 
the scalar case as the generalization to the multi-port case is 
straightforward. We obtain by simulation or measurement an 
excitation u(tk) and output response y(tk), 0≤ k ≤ Ns–1, being 
Ns the time domain samples with tk=kΔt and Δt being the time 

invariant time step length. In the following we introduce the 
simpler notation u(k) and y(k). 

The objective of this work is to determine the rational 
transfer function H(s) (1) of order N where s=σ+jω is the 
Laplace variable. The task is to calculate the poles {pn} and 
residues {rn} such that the model reproduces as accurately as 
possible the output time domain response y(k) with the given 
excitation u(k).   
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Time Domain Vector Fitting (TD-VF) 
We use the TD-VF algorithm [6] to identify poles {pn} and 

residues {rn} of the rational function (1). By transforming the 
frequency domain formulation of the VF algorithm [2] into the 
time domain we obtain with successive discretization of the 
resulting convolution integral [6],[8] the relation (2) 
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where {kn} and {mn} are unknowns. The coefficient sequences 
ũn(k) and ỹn(k) are dependent on the numerical integration 
method employed in the discretization. Assuming trapezoidal 
integration, these are given recursively in (3) [8] where {qn} is 
a set of initial poles. (We show only ũn(k) since ỹn(k) has the 
same form). Alternatively, the coefficients can be obtained 
assuming recursive convolution [6].  

          [ ]2
( ) ( 1) ( ) ( 1)

2 2
n

n n
n n

q t tu k u k u k u k
q t q t

+ Δ Δ= − + + −
− Δ − Δ

 (3) 

By writing (2) for each time sample 0≤ k ≤ Ns–1, an 
overdetermined linear equation is obtained which is solved in 
the least-squares (LS) sense. The computed unknowns kn 
allow us to obtain an improved set of poles {qn} [6]. The final 
set of poles of H(s) is achieved by iterating the pole relocating 
procedure until convergence, {qn}→{pn}. This procedure 
normally converges in few iterations. 

Once we have the poles {pn}, the final residues {rn} are 
computed by solving the (LS) overdetermined linear 
system (4)  
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Digital Filtering 
In situations where the output sequence y(k) is 

characterized by a non-smooth behavior and fast variations, it 
can be difficult to calculate a rational model. The reason is 
that the high frequency content requires to use a very high 
model order. In order to overcome this problem we reduce the 
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high-frequency content by pre-processing the output response 
by a digital low pass filter, before applying the TD-VF 
algorithm. 

Ideal Digital Low pass Filter 
The ideal low pass filter is represented in the digital 

frequency domain by the transfer function Hid, see Fig. 1. The 
variable ν (–0.5≤ ν ≤+0.5) defines the digital frequency axis 
and the parameter νc is the normalized filter cut-off frequency 
(with respect to the sampling frequency fs=(1/Δt)). 

Hid

–νc +νc
ν–1/2 +1/2

1←

 
Fig. 1. Low pass filter (ideal and normalized) in the digital frequency domain.  
 

In the discrete time domain, this characterization is 
equivalent to the impulse response hid sequence (5).   
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Finite Impulse Response (FIR) 
In reality, the ideal filter sequence hid (5) is not realizable 

since it has infinite duration and because it is defined for 
negative m. For these reasons we adopt in our work the well 
known Finite Impulse Response (FIR) filtering [13] that 
makes use of a truncated sequence of the ideal response (5). 

Practical FIR Implementation Steps 
Given data: response sequence y(k) to be filtered. 
1) Starting point: impulse response sequence hid(m) of 

the ideal digital filter (5). 
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Fig. 2. Truncation of the impulse response hid(m): selection of coefficients. 

 
2) Truncation of the hid impulse response: we select only 

the (M+1) coefficients that defines the first lobe of the 
ideal ‘sinc’ sequence, see Fig. 2. This is done in order 
to avoid oscillations in the filtered response. The filter 
order M, which is chosen as an even number, is 
obtained by (6) where the function ‘ceiling’ returns 
the upper closest integer.                  
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3) Computation of the coefficients of the (translated) FIR 
discrete response hFIR: these correspond (7) to the 
coefficients of the translated (with delay M/2) and 
truncated hid. Note that the causality is hence 
guaranteed.   
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4) Application of the filter FIR: we obtain the output 
filtered response sequence yf(k) as the discrete 
convolution (8) between the data sequence y(k) and 
hFIR. 
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5) Removal of the delay (M/2) of the filtered response 
(9). Note that the first few samples of the filtered 
response (corresponding to negative time) are 
discarded.   
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Choice of Cut-off Frequency 
The normalized cut-off frequency νc is determined 

according to the specific application. Whenever is possible to 
reduce νc, the reduced high-frequency content of the signal 
often allows a successful application of TD-VF with fewer 
poles.   

The choice of νc has an impact on the selection of the 
initial poles {qn} of the TD-VF. In particular, these are 
assumed linearly spaced in the interval (10), where Tw is the 
observation window length of the original time domain 
samples. 
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Application Example 1: Simulated Data 
To demonstrate the efficiency of the filtering approach, we 

consider in this example an open-ended high voltage 
underground cable, as shown in Fig. 3. The cable is of coaxial 
design with a copper core conductor and copper screen. The 
purpose is to identify a rational model of the cable with 
respect to the connected cable end when the far end is open. 

UC

u(t)

i(t)

+ 3000 m

 
Fig. 3. High voltage cable 
 

Using the circuit solver PSCAD, which is based on 
numerical integration with a fixed time step length [1], we 
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simulate the step response current i(t) that flows into the cable 
for a time duration of 120 μs with time step Δt=0.12 µs. The 
resulting current is characterized by a sequence of very steep 
wave fronts (high frequency content).  

We use two alternative input datasets for the TD-VF. The 
first one is based on the original response i(t) whereas the 
second one is based on the a filtered current i(t) obtained by 
the FIR filter with a normalized cut-off frequency νc=0.045. 
We use 20 pole relocation iterations in TD-VF. 

Fig. 4 shows the model response obtained by TD-VF when 
filtering has not been applied. The results is shown for two 
alternative model orders (N=40, N=100). Comparison with the 
original simulated response shows that the model performance 
is quite unsatisfactory due to spurious Gibbs-like oscillations. 

 
Fig. 4. Fitting model to data (without filter) using two alternatives 
orders. N=40, N=100. 
 

Fig. 5 shows the same result when the simulated current 
response has been processed by the FIR before applying 
TD-VF. Clearly, a much better result is now obtained as the 
response is essentially free of oscillations. The only 
disadvantage is the inevitable loss of steepness for the wave 
fronts. We also note that the response is not shifted in time, 
thanks to the removal of the delay in Step 5). This result is 
quite different from what would be achieved by a physical 
low-pass filter which results in distorted and shifted responses.  

 
Fig. 5. Fitting model to data (with filter). N=40.  
 

A Remark About Passivity 
The passivity of the model, i.e. the inability to produce 

energy, has not been considered in this example in order to 
obtain a direct and fair comparison of the results. However, 
we have noticed that the model constructed without the filter 
approach has several passivity violations while the model 
obtained via the filter approach happens to be passive. We 
have found a similar result in many cases; the usage of the 
filter often helps to build passive or nearly passive models.      

Application Example 2: Measured Data 
We consider now a measured dataset obtained from a 3-

phase power transformer used in high-voltage power 
distribution systems, see Fig. 6. A near step voltage is applied 
to port 1 with ports 2 and 3 grounded. The task is to obtain a 
model for the voltage transfer to the open port 4, i.e. the 
voltage ratio R41 (s) = V4(s)/V1(s). 

 
 
 
 

 
 

 
Fig. 6. High-voltage power transformer (six-port device) 

 
Fig. 7 shows the measured excitation V1 and the response 

V4. The time record has a duration of 10 μs with a sampling 
step length Δt=1 ns. The responses are seen to be quite noisy. 

 
Fig. 7. Measured voltage excitation on port 1 and voltage response on port 4.  
 

A model is constructed using an order N=40 with 30 pole 
relocating iterations. Fig. 8 and Fig. 9 (expanded view) 
compares the model’s response with that of the measurement. 
It can be seen that in this case, a very good result is achieved 
whether the filter is applied or not. Here, the limited frequency 
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content of the response allows the standard version of the 
TD-VF by itself to perform very well. The result also confirms 
excellent noise immunity of the TD-VF method.  

 
Fig. 8. Fitting model to data (with and without filter). N=40. 
 

 
Fig. 9. Expanded view of Fig. 8. 
 

Conclusions 
In this work a FIR-type digital filter has been introduced 

as a data pre-processor for TD-VF. The filtering offers several 
advantages by reducing the required model order and by 
avoiding false oscillations in the models’ response. In addition 
it often reduces the severity of passivity violations in the 
obtained model. The filter is carefully designed so as to avoid 
false delays in the response. 

We have considered datasets coming from both 
simulations and measurements. In the first case, the response 
was characterized by steep edges due to wave reflections in a 
cable. Here, the filtering approach greatly reduced the 
presence of false oscillation in the model’s response. In the 
second case, the response was contaminated by measurement 
noise. Here, the standard version of the TD-VF performed 
well even without usage of the filter.   
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