

Project no.: 229196

Project acronym: **piezoVolume**

Project full title: High volume piezoelectric thin film production process for microsystems

Collaborative Project targeted to a special group (such as SMEs) Grant Agreement No.:

NMP2-SE-2009-229196

Start date of project: 2010-01-01 Duration: 3 years

D 5.1 Market analysis

Due delivery date: 2010-09-30 Actual delivery date: 2011-06-30

Organisation name of lead contractor for this deliverable: SOS

	Project co-funded by the European Commission within the Seventh Framework Programme (2008-2011)				
	Dissemination Level				
PU	YU Public x				
PP	P Restricted to other programme participants (including the Commission Services)				
RE	E Restricted to a group specified by the consortium (including the Commission Services)				
CO Confidential , only for members of the consortium (including the Commission Services)					

Deliverable number:	D 5.1
Deliverable name:	Market analysis
Work package:	WP 5 WP Dissemination and exploitation
Lead contractor:	SOS

Author(s)					
Organisation	E-mail				
SOS	r.herrmann@solar-semi.com				
	Organisation				

Abstract

The data of the given market analysis are mainly based on a piezoMEMS market analysis by "Yole Développement" (market research company). The analysis presents an overview of the "ferroelectric thin film – market". Parameters like market size, main applications and the key players are shown. Due to the expected forecasts, the market growth rates and the trends can be derived. In the final chapter the key facts, trends and general conclusions are summarized.

Public introduction¹

¹ According to Deliverables list in Annex I, all restricted (RE) deliverables will contain an introduction that will be made public through the project WEBsite

TABLE OF CONTENTS

Page 3

Page

1	MAR	KET ANALYSIS	4
1	1.1	Main ferroelectric thin film applications \rightarrow MEMS	
	1.2	Main ferroelectric thin film applications \rightarrow besides MEMS	
	1.3	Key ferroelectric thin film market players	
	1.4	Main R&D labs active in ferroelectric thin films	
	1.5	Ferroelectric thin film deposition techniques \rightarrow processes	
	1.6	Ferroelectric thin film functions and materials	
	1.7	Global ferroelectric thin film market forecast \rightarrow in wafers	7
	1.8	Global ferroelectric thin film market forecast \rightarrow by material	8
	1.9	Global ferroelectric thin film market forecast \rightarrow by deposition techniques	8
	1.10	MEMS ferroelectric thin films \rightarrow an overview	
	1.11	MEMS 2009-2015 → Forecast in US \$Million	9
	1.12	General Overview of MEMS ferroelectric applications	10
	1.13	MEMS \rightarrow Roadmap to production for new players	10
	1.14	Piezoelectric MEMS \rightarrow Key industrial market players	11
	1.15	MEMS deposition techniques \rightarrow Key industrial market players	11
	1.16	MEMS thin film thickness by application \rightarrow Key market players	12
	1.17	MEMS \rightarrow key industrial market player positioning	12
	1.18	Besides MEMS \rightarrow Roadmap to production for new players	
	1.19	Besides MEMS \rightarrow Materials and key device industrial players	13
	1.20	Besides MEMS \rightarrow Industrial player mapping by deposition technique and	
		material	
	1.21	Besides MEMS \rightarrow Ferroelectric thin film thickness by application	
	1.22	Besides MEMS \rightarrow key industrial market player positioning	
	1.23	Key facts, trends and general conclusions	15

1 **MARKET ANALYSIS**

transducer

The data of the given market analysis are based on a piezoMEMS market analysis by "Yole Développement" (market research company): MEMS: Ferroelectric Thin Films Markets (http://www.i-micronews.com/reports/Ferroelectric-Thin-Films Markets/196/search?searchfield=piezoMEMS).

The report from Yole gives a very good overview over parameters like market size, main applications and the key players are shown. Due to the expected forecasts, the market growth rates and the trends can be derived. In the final chapter the key facts, trends and general conclusions are summarized.

Main ferroelectric thin film applications \rightarrow MEMS Ferroelectric Ferroelectric Thin films bulk **R&D** or emerging Main applications applications Hard disk Micro Ink-Jet Heads reader actuator mirrors Energy Infrared (IR) harvesting Gyroscopes sensors Pressure Wafer Level sensors Auto focus **RF** switches Microphones Medical Ultrasonic

1.1

1.2 Main ferroelectric thin film applications

→ besides MEMS

IPD = Integrated passive devices FeRAM = Ferroelectric random access memory

1.3 Key ferroelectric thin film market players

1.4 Main R&D labs active in ferroelectric thin films

1.5 Ferroelectric thin film deposition techniques

→ processes

1.6 Ferroelectric thin film functions and materials

PZT = lead zirconate titanate

AIN = aluminium nitride

SBT = bismuth-strontium-tantalate

BST = barium strontium titanate

Domain	Applications	Thin film functions	Materials
	IJ heads, Wafer Level Auto focus, RF switches, Micro mirrors	Piezoelectric actuation	PZT, AIN
MEMS	Infrared (IR) Sensors	<u>Pyroelectric</u> effect (conversion from IR heat into volts)	SBT, PZT
	Ultrasonic sensors, energy harvesting, pressure sensors, microphones	Piezoelectric transduction	PZT
	IPD ESD/EMI audio (Fixed capacitor)	High dielectric constant	PZT and doped PZT
IPDs	IPDs Hearing Aids (Fixed capacitor)	High dielectric constant	BST
	IPDs RF tunable capacitor	Tunable dielectric constant	BST
Memories	FeRAM	Constant hysteresis cycle	PZT doped or SBT
Others	Telecom optical switch	Tunable optical index	PLZT doped

Remark:

• PZT is the dominant material for ferroelectric thin film applications

1.7 Global ferroelectric thin film market forecast

\rightarrow in wafers

1.8 Global ferroelectric thin film market forecast → by material

1.9 Global ferroelectric thin film market forecast techniques

 \rightarrow by deposition

Ferro electric thin films market forecast by deposition techniques

1.10 **MEMS** ferroelectric thin films

\rightarrow an overview

1.11

→ Forecast in US \$Million

MEMS 2009-2015 MEMS Forecast in \$M June 2010 \$18 000,0 \$16 000,0 \$14,000.0 \$12 000,0 N\$SU \$10 000,0 \$8 000,0 \$6 000.0 \$4 000.0 \$2 000,0 \$0,0 2009 2011 2012 2013 2014 2010 2015 Others (microstructures, micro tips, flow meter ...) \$129.0 \$150.4 \$204.9 \$270.0 \$342.7 \$462.4 \$596.9 Micro speakers \$0,0 \$0,0 \$0,0 \$10,0 \$37,5 \$90,0 \$150,0 Oscillators \$7,9 \$17,0 \$33,6 \$64,7 \$119,9 \$213,0 \$347,6 REMEMS \$228.9 \$246.5 \$286.5 \$339.4 \$402.1 \$506.3 \$602.5 Microdispensers (microfluidics) \$140,1 \$174,3 \$214,7 \$261,3 \$313,5 \$376,1 \$451,3 Microfluidics for IVD \$633,3 \$757,5 \$952,4 \$1 196,8 \$1 494,9 \$1875,5 \$2 363,5 Microfluidics for Research \$199,3 \$269,0 \$363,1 \$490,2 \$637,3 \$828,5 \$1077,1 Other optical MEMS \$77,4 \$91,4 \$107,8 \$128,7 \$154,9 \$189,3 \$225,9 Projection systems \$1068.6 \$2 115.1 \$663.7 \$707.4 \$839.8 \$1415.4 \$1814.2 Micro displays \$0,5 \$2,5 \$9,6 \$23,0 \$45,0 \$66,0 \$86,0 Microbolometers \$204,5 \$219,3 \$233,5 \$250,6 \$277,6 \$313,8 \$375,0 Digital Compass \$111.5 \$194.6 \$248.5 \$269.0 \$281.7 \$286.9 \$285.0 Gyroscopes \$839,6 \$1012,1 \$1 127,5 \$1 235,7 \$1 381,6 \$1 442,4 \$1 533,9 Accelerometers \$1036,2 \$1 237,1 \$1 341,2 \$1 402,2 \$1 429,1 \$1 470,3 \$1117,0 Microphones \$123,3 \$170,5 \$222,2 \$292,4 \$323,6 \$370,5 \$410,7 Pressure Sensors \$1056,0 \$1 200,6 \$1 404,3 \$1 694,9 \$1941,8 \$2 154,7 \$2 324,4 Inklet Heads \$1547,7 \$1566,1 \$1625,7 \$1740,4 \$1831,5 \$1937,9 \$2 043,7

	Main thin film applications				R&D emerging thin film applications				
	Ink-Jet Heads	IR Sensors	Wafer level Auto Focus	RF MEMS - Switches	Ultrasonic imagers	MEMS µphones	Pressure sensors	µmirrors	MEMS Energy Harvesting
2009 TOTAL Market (\$)	\$1547M	\$204M	0	<\$10M	<\$1M	\$123M	\$1056M	\$663M	0
2009 TOTAL Market (Units)	668M	0.2M	0	0.2M	<1M	318M	296M	1M	0
2015 TOTAL Market (\$)	\$2043M	\$375M	About \$200M	\$387M	na	\$410M	\$2324M	\$2115M	na
2015 TOTAL Market (Units)	719M	0.7M	237M	486M	na	1381M	689M	136M	na
Ferroelectric materials	PZT	SBT	PZT	PZT	PZT	PZT	PZT	PZT	PZT
Properties	Actuation	Pyroelectric effect	Actuation	Actuation (piezo)	Transduction (Piezo)	Transduction	Transduction	Actuation	Transduction (piezo)
Competing actuation principle	Thermal	Bolometer	VCM, EAP, SMA	Electro static	-	Capacitive	Capacitive	Electro static, magnetic	Electromagnetic, electrostatic, thermal effect
Deposition method	PVD/ CSD	PVD/CSD	CSD	CSD/PVD	CSD/PVD	CSD	CSD	?	PVD
<u>MEMS thin film</u> Players	Epson (JP) Océ (NL), Xaar (UK), Panasonic (JP),	Pyreos (UK) Irisys (UK) Symetrix/ delphi (US)	poLight (NO)	IBM (US), Philips Research (NL)	NovioMEMS (NL)	US Army Research Lab	US Army Research Lab	LG (Kr)	KIST (KR)

1.12 General Overview of MEMS ferroelectric applications

1.13 MEMS

\rightarrow Roadmap to production for new players

1.14 Piezoelectric MEMS

\rightarrow Key industrial market players

	PZT	SBT	AIN
IJ Heads	EPSON XAAR FUJifilm		
IR sensors		Symetrix Corporation	
WL auto focus	poLight		
RF switches	IBM PHILIPS		TOSHIBA
Ultrasonic	NOVIOMEMS PHILIPS		

1.15 MEMS deposition techniques

\rightarrow Key industrial market players

	PVD	CSD
IJ Heads	EPSON FUJH	AAR [®] FILM
IR sensors	PYRE <mark></mark> OS	Symetrix Corporation
WL auto focus		poLight
RF switches		IBM PHILIPS
Ultrasonic	NOVIONEMS Protetypeny MEMS Integration and Sensors	PHILIPS

1.16 MEMS thin film thickness by application \rightarrow k

→ Key market players

Application	Key players	Thin film thickness
IJ Heads	EPSON XAAR FUJIFILM	1 - 4 µm
IR sensors	PYREOS Symetrix Corporation Image: Symetrix corporation Image: Symetrix Corporation Image: Symetrix corporation Image: Symetrix corporation	0.1 – 0.5 μm
WL auto focus	poLight	60 µm
RF switches	TEM PHILIPS TOSHIBA	2 - 50 µm
Ultrasonic	NOVIONEMS PHILIPS	0.5 - 50 μm

1.17 MEMS → key industrial market player positioning

1.18 Besides MEMS → Roadmap to production for new players

1.19 Besides MEMS → Materials and key device industrial players

		PZT and doped PZT	BST	SBT
IPD ESD audio		NP 🆅		
IPD hearing aids	C			
IPD RF variable capacitors				7
FeRAM		50% Ramtron Fujitsu Rohm		50% Panasonic OKI
Others		EpiPhotonics		

1.20 Besides MEMS → Industrial player mapping by deposition technique and material

Remark:

- The choice of the technique is mainly dependent on the processing culture and history of the company
- CSD is used for 66% of the total market (FeRAM / IPD)

1.21 Besides MEMS → Ferroelectric thin film thickness by application

Application	Player examples	Thin film thickness
IPD ESD/EMI audio	NP 57	0.1- 0.2 μm
Hearing Aids IPDs		5 µm
FeRAM	ROHM	0.2- 0.5 μm
Telecom optical switch	EpiPhotonics	6 µm
Piezoelectrical applications		2-60 μm

Remark:

• Ferroelectric thin films use at least 10 times less material than piezoelectric thin films used for MEMS

1.22 Besides MEMS

Remark:

• Large groups will probably continue to lead the IPD and FeRAM markets

1.23 Key facts, trends and general conclusions

Deposition techniques

- PVD is the technique used for the largest part of the ferroelectric thin film production, mainly thanks to EPSON inkjet head production with PVD.
- However, CSD is very popular in IPD applications (NXP and STM users) and will be increasingly used in MEMS applications thanks to the precise control of the material properties with CSD. Globally, the market shares of CSD will increase from 22 to 42% in 2015.
- CVD has been rarely used up to now. However, it may be use in the future in high density IPD capacitors which may appear before 2015.

Materials

- PZT is the dominant material for ferroelectric thin films thanks to its high ferroelectric performance: more than 95% of markets in 2010.
- Alternative materials, SBT and BST are used for FeRAM, IPDs and IR sensors.
- PZT will stay the dominant material unless the restriction on the use of lead (RoHS European directive) forces manufacturers to use materials that generally have a lower performance.

Applications

- Ferroelectric materials are historically not common for semiconductor manufacturing companies who are often reluctant to adopt these exotic materials in their fabs.
- This philosophy is changing in the 2000s with the adoption of ferroelectric thin films by well known companies in a variety of markets.
- In 2010, ferroelectric thin film production is 881k 6" wafers. It is done through two main applications: MEMS inkjet heads and IPD ESD/EMI planar capacitors that together represent 90% of the production. Large companies (Epson, STM, NXP) have adopted ferroelectric thin films at a large industrial scale for the past several years.
- Until 2015, the ferroelectric thin film business will continue to grow at rate of +7.5% / year with many current or new applications:
 - In the MEMS field: Wafer Level Autofocus, IR sensors, RF switches, medical ultrasonic transducers.
 - In other markets: IPD tunable capacitor, IPD hearing aids, FeRAM, optical switches.
- These applications will represent 26% of the total ferroelectric thin film production in 2015 which will be 1,263k 6" wafers.