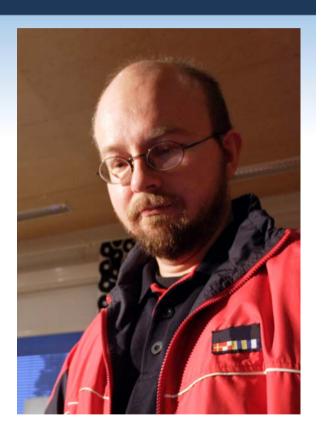
Wearable technology development in Finland

Prof. Jukka Vanhala
Tampere University of Technology
Department of Electronics
P.O.Box 692, 33101 Tampere, Finland
tel. +358400623237, fax +358331152620
jukka.vanhala@tut.fi



24.6.2009

Jukka Vanhala

Dr.tech. Jukka Vanhala

- Professor of Electronics at the Tampere University of Technology
- Head of the Kankaanpää Research Unit for Wearable Technology
- Docent of interactive technology at the University of Tampere
- MSc in 1985, Electrical Engineering, TUT
- Licentiate of technology in 1990, Software engineering, TUT
- Dr.tech. in 1998, Electronics, TUT
- Research interests include
 - embedded systems
 - · ambient intelligence
 - · wearable technology
- Can be reached at jukka.vanhala@tut.fi.

24.6.2009

Sites of activity

Tampere

- Tampere University of Technology main campus
 - Institute of Electronics
 - Smart Wear Lab, (Fiber Technology)
- Nokia

Kankaanpää

- Clothing+
- Reima
- TUT Research Unit for Wearable Technology

Lahti

- Rukka
- Lahti University of Applied Sciences, Institute of Design

Helsinki

- Nokia
- Suunto
- IST
- TAIK, University of Art and Design Helsinki, (Aalto)

Oulu

- Polar Electro
- University of Oulu

Rovaniemi

University of Lapland

Kouvola

Kymenlaakson AMK, University of Applied Sciences

Hämeenlinna

HAMK, University of Applied Sciences

Jukka Vanhala

Personal Electronics

PEG

Prof. Jukka Vanhala

~25 research scientists at Tampere and Kankaanpää (partly funded by European Union Structural Funds)

Research in embedded systems

Ambient intelligence
Wearable technology
User interfaces, usability
Simulator systems
Short range wireless communication
Ultralow power consumption
Electronics integration and packaging

Wearable computing

Ambient intelligence

Smart clothing

Prediction in 1999

Electronics will be embedded into everyday objects

Electronics provides new functionality

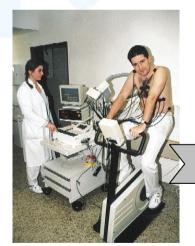
Objects provide a use case and an environment

10 years after, the technology is available Who does the innovations?

User measurements

A CANADA

Medicare
Elderly care


Health and fitness

Sports

Continuum

information appliances

wearable technology

smart clothing

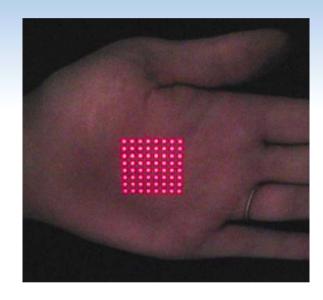
intelligent textiles

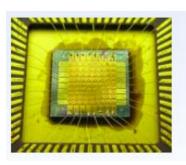
Swimmers distance meter

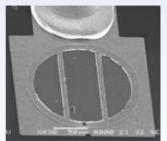
Clothing+ swimmers distance meter

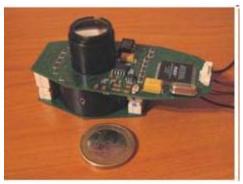
Calculates the direction of movement of a swimmer using magnetic sensors and signal processing

Typical design


- cheap sensors
- novel signal processing algorithms
- implementation on a micro controller
- small display, few buttons
- injection molded enclosure






Miniature display projector

- Miniature projection display capable of projecting the image onto the user's palm
- Miniaturized electronics, optics
- Ultra-bright Resonant Cavity Light-Emitting Diode (RCLED) -based display element

Smart clothing

Clothing with enhanced functionality

Enhanced basic functions

- protection
- looks
- pockets

Additional functions

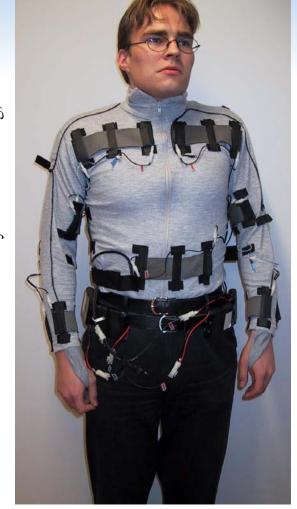
- communication
- measurements
- etc.

The need for good product concepts must be emphasized

Cyberia survival suit, TUT

TESC

Technologies Enabling Smart Clothing - project One research prototype for studying usability of electric heating in garments


- usability, user experience
- technologies
- energy balance
- effect on sweating
- measures
 - temperature
 - humidity
 - power consumption
- controls heating

The difficulty with research prototypes

Other implementations in TESC

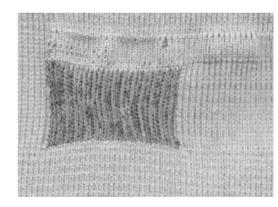
- bioimpedance measurement suit
- · user interface for outdoor use

Textile electrodes

Need for

rubber

Reliable stable soft dry electrodes
A lot of reports have been published
Knitted, embroidered, woven, plastic,


Performance comparable to standard electrodes

In commercial mass production for sports applications

• Clothing+, Adidas, Polar-Electro, NuMetrex

Pola: Electrode materials evaluated at TUT Scilingo et al. IEEE Proceeding ITB 2005

Rubber electrode, Mühlsteffa and Such, IEEE EMBS 2004

Manufacturing technologies

Wearable designs are human size, e.g. user interfaces must be used with fingers

Electronics miniaturization an overkill

Distributing functionality evenly is probably not a good idea (textile computing)

Batteries

Composition of highly integrated modules with large area simple electronics and flexible wiring

Rigid highly integrated modules

Wiring harness

Encapsulated modules

- Electronics in a detachable module
 - Mp3-player
 - Mobile phone
 - Gps-receiver
 - Medical measurement devices
- Straightforward design for electronics, consumer electronics
- Electrodes, wires, UI-designs and other washable components permanently in the garment

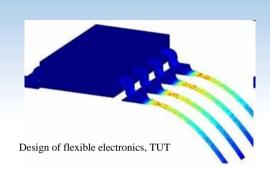
PUHVI-project, TUT

Textile pressure sensors in the structure of the insole and detachable electronics

Textile electrodes sewn inside the fabric _____

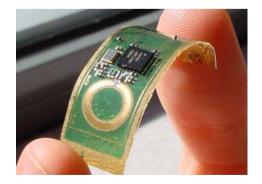
Detachable ECG- datalogger with snap fasteners

ECG-Shirt, TUT



Layout design

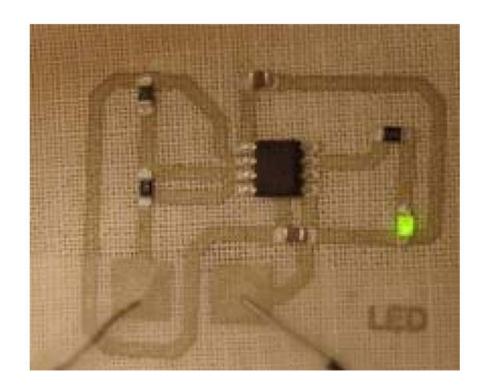
Flexible designs can be implemented on flexible PCBs (FCB)


Flexible PCB is normally used as a flexible cable

- Periodic bending, hinges
- May be bent millions of times

University of Gent

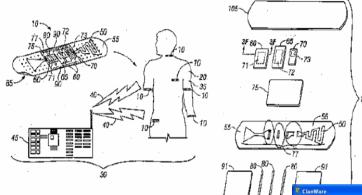
Flexible PCB with components are seldom used


- Reliability problems, low bent count before breakage
- Free form packaging, no bending after assembly
- Special design rules
- Plain traces OK, bonding areas a problem
- Possibly for wearable applications

Jukka Vanhala

Screen printed traces

TUT has studied printing patterns on different unconventional substrates Silver paste screen printed on cotton and conductive silver adhesive for bonding


Communication application examples

Fire fighter, environment

Business card exchange, intra person

Implanted system, intra body

Home care, Internet

[Pat. US2005/096513

77
77
80
91
80
91
File View Tools
CLAN

CLAN –project at TUT

PUHVI –project at TUT

Thank you!

