Personal Health Systems for Health and Wellness Management

Elina Mattila*, Ilkka Korhonen*, Antti Vääätänen*, Aino Ahtinen**, Timo Leino***, Leila Hopsu***

*VTT Technical Research Centre of Finland
** Nokia Research Center
***Finnish Institute of Occupational Health
Lifestyles and health

• 77% of Europe’s disease burden related to lifestyles:
 • Sedentary lifestyle: obesity, type II diabetes, CVD
 • Overweight: type II diabetes, CVD, high blood pressure and cholesterol, cancer, arthritis, ..
 • Work-related stress: sleep problems, depression

• Costs:
 • Obesity: 2-6 % of healthcare costs in Europe
 • Physical inactivity: €3-12 billion in the UK
 • Sleep problems: 5 billion euros in Finland
 • Cardiovascular diseases: 17% direct healthcare costs in Finland
 • Mental health problems: 3-4% of GNP in Europe
Behaviour change

• Behaviour change is the key to health and disease management:
 • 70% of stroke and colon cancer, 80% of coronary heart disease, and 90% of type II diabetes could be prevented by maintaining healthy lifestyles
 • Healthy lifestyles can add 14 years to life

• Same methods applicable for wellbeing management, disease prevention and chronic disease management

• Permanent lifestyle changes required
 • Long-term process: time & practice
 • Success rate in long-term weight loss maintenance ~20%

McGinnis et al., Health Affairs 21(2), 2002
Citizen empowerment vs. healthcare in wellbeing management

Expertise on:
- Everyday life
- Her choices
- Her motivation

Expertise on:
- Health
- Effects of behaviours
Research scope

• Target group:
 • Working-age (30-55-year-old) citizens
 • Healthy => At risk
 • “Average Joe”

• Personal Health Systems: Integrated wellness technologies
 • Web, mobile, monitoring

• Research questions:
 • Technology preferences
 • Usage patterns
 • Motivational factors and barriers
 • User profiles
 • Effect of use of technologies on health & behaviours
Example study 1: Nuadu
Multifactor health management support for employees

- Goal:
 - To support employee health management intervention on multiple health risks
 - To provide continuity to intervention

- Subjects, N = 3x118
 - 35/82 male/female, 44 years (30-55 y)

- Personal health system:
 - Web portal including integrated wellness services (self-monitoring, nutrition)
 - Mobile applications (self-observation diary, training coach, relaxation application)
 - Pedometer and scales
 - Heart rate variability monitoring & wellbeing analysis
Example study 2: P4Well
Psychophysiological wellbeing management

• Goal:
 • To support psychological and physiological wellbeing management of working-age citizens with emphasis on stress, recovery, sleep and exercise

• Subjects:
 • Entrepreneurs: 10/12 male/female, 54 years (37-62)
 • Technology group: 12 male, 48 years (42-59)

• Personal Health System:
 • Web portal including psychological tools and integrated services (self-monitoring, training coach)
 • Mobile applications (self-monitoring, training coach, relaxation)
 • Pedometer and heart rate monitor
 • Heart rate variability and movement monitoring & wellbeing and sleep analysis
Technology preferences

- Different combinations of technologies perceived the most useful in different studies:
 - Study 1: Scales and diary
 - Study 2:
 - Tech group: Heart rate meter and training coach
 - Entrepreneurs: Pedometer and relaxation application
 - No single winning technology
 - Depends on users and context
Technology usage

• Early usage:
 • One fourth used web portal
 • Simple devices were used the most
 • Especially actively in Study I
 • Mobile applications were used more than web portal

• Long-term usage:
 • One fourth were still using some technology after 1 year
 • Most popular: scales, pedometer, simple mobile diary

• Technology adopters: 30-50 %

<table>
<thead>
<tr>
<th>ACTIVE USERS [%]</th>
<th>Study I</th>
<th>Study II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 month</td>
<td>12 month</td>
</tr>
<tr>
<td>Web portal</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>Mobile app</td>
<td>12-53</td>
<td>4-23</td>
</tr>
<tr>
<td>Devices</td>
<td>71, 77</td>
<td>39, 71</td>
</tr>
<tr>
<td>Average</td>
<td>43 %</td>
<td>25 %</td>
</tr>
<tr>
<td>Nonusers</td>
<td>-</td>
<td>25 %</td>
</tr>
</tbody>
</table>
Motivational factors and barriers

- Observations on motivational factors:
 - Feedback on long-term progress rewarding
 - Concrete feedback, understandable goals, e.g., step count, weight
 - Interactive, adaptable technologies keep interest high
 - Always at hand and ready to use, e.g., pedometer, mobile phone
 - Physical device acts as a reminder
 - Easy-to-use, intuitive and simple!

- Barriers:
 - Effort, e.g., manual input
 - Monotony – nothing new happening in the application
 - Forgetting to use
 - Abstract concepts in input and feedback
Summary

• A significant subgroup used technologies:
 • 33-82 % used personal devices (scales, pedometer, heart rate monitor)
 • About 30 % used some other technology (Web or mobile)
 • All technologies gained a faithful user group
 • In Study 1, usage continued for 12 months

• Mobile applications were better accepted and more actively used than Web portals

• Most popular applications differed between studies and user groups, although the groups were similar
 • Intervention program and subject training may have had a significant effect
 => Predicting acceptance is difficult
Conclusion

• One technology does not fit all
 => Offer options!
 => User profiling one of the major research questions

• Simple, ready-to-use technologies
 • Unobtrusive and integrated into everyday life
 • Always available and ready to use
 • Physical devices as reminders
 • Concrete feedback and understandable goals
 => Mobile applications and simple personal devices!
 => Opt for simplicity!
VTT creates business from technology

Elina Mattila
elina.m.mattila@vtt.fi