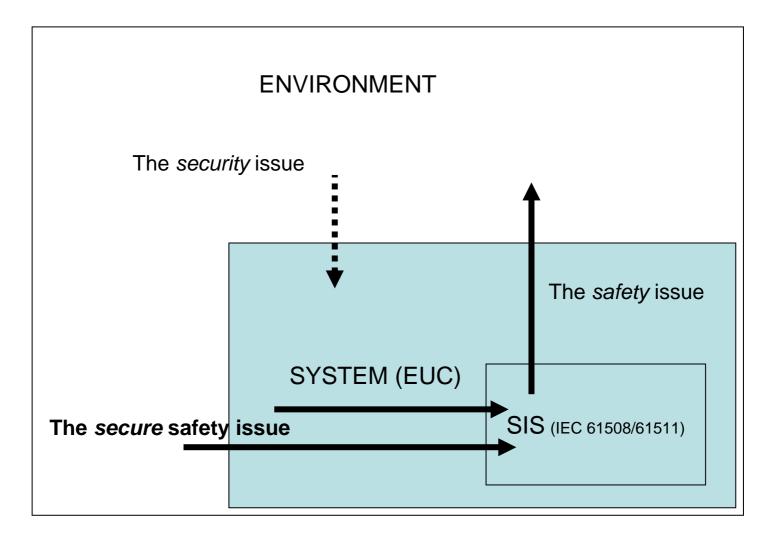
Remote access in a secure manner ?

Sikkerhetssystemkonferansen 2006 Oslo 2-11-2006

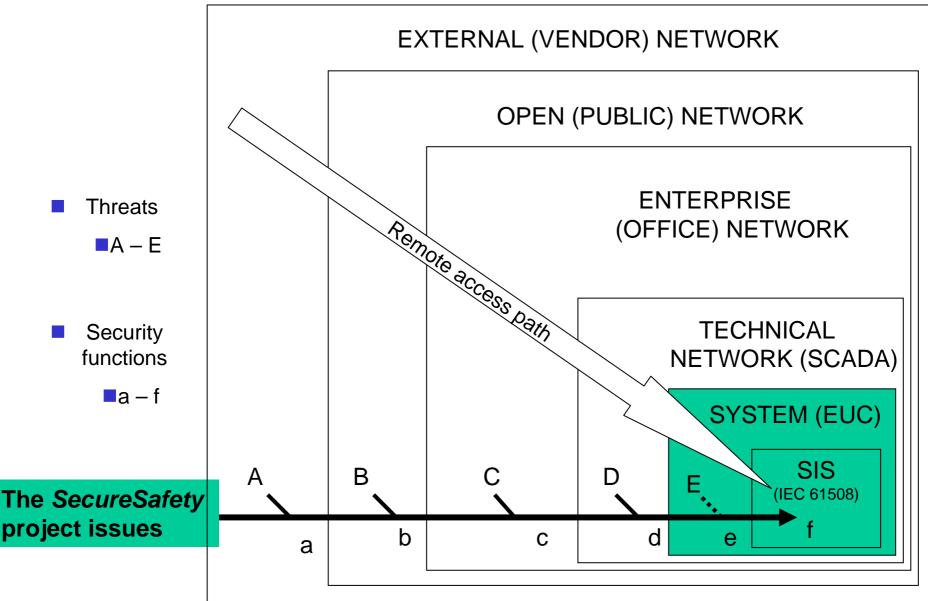
Tor Olav Grøtan, NTNU / SINTEF Teknologi og samfunn

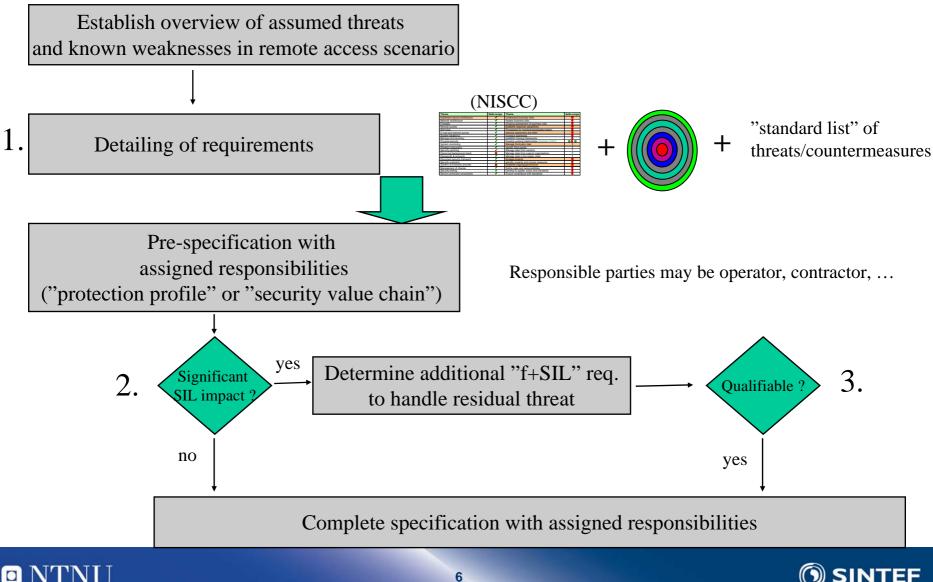
PDS forum: The SeSa project context

- Financed by Norwegian Research Council, owned by PDS Forum
- PDS forum
 - Norwegian acronym for "Reliability of Computerised Control Systems"
 - Participants from oil companies, governmental bodies, vendors, consultants, engineering companies
- PDS objective/mission
 - Professional arena for exchange of experience between Norwegian vendors and users of Computerised Control Systems
 - Specifically on safety and reliability issues
- PDS method
 - IEC 61508/61511 based, with increased emphasis on systematic, common-cause failures
 - Main application: computerized safety systems in oil and gas offshore and onshore industry.
 - Safety Instrumented Systems (SIS)
 - E.g. Emergency Shut-Down (ESD) systems


The SecureSafety (SeSa) project

- Objective: Extension of PDS agenda, method and tools
 - Extend the PDS method to cover failure modes that arise when a SIS on an oil platform is operated remotely (via Internet connection)
- Scope:
 - Develop a framework for specifying security measures that are adequate for the purpose of *defending* the Safety Integrity Level (SIL) of the SIS, and provide practical guidance on its use
- Activities
 - Initial concept study on a case scenario (Floating Production Vessel)
 - Evaluation of theory, frameworks and standards
 - Identification of threats and (new) failure modes
 - Development of a SecureSafety specification method for the purpose of defending SIL levels
 - Development of practical guidance on use of the method


Conceptualization of SecureSafety



Structuring of SecureSafety : vs SCADA security, Information security

Outline of specification method

The underlying problems to be addressed

- 1. How to **organise and describe a proper defence** against (accumulated) threats along the remote access path
 - Understanding the interplay between
 - Threats A-E
 - Defences a-f
 - Standardisation ?
- 2. How to **model the impact on the SIL level** (potential SIL degradation)
 - Quantitative or qualitative ?
- 3. How to model, implement and measure the **combined** "f+SIL"
 - Which has to be implemented alongside the (61508) safety function (in the same "sandbox")
 - "f" = security function within SIS

1: SeSa scope vs NISCC Good Practice Guide

Theme	SeSa scope	Theme	SeSa scope
Implement secure architecture	✓	Understand business risks	0
Network architecture	✓	Assess business risks	0
Firewalls	✓	Ongoing assessment of business risks	O
Remote access	✓	Establish response capabilities	\otimes
Anti-virus	✓	Procedures for monitoring/evaluation/action	0
E-mail and Internet access	✓	Improve awareness and skills	0
System hardening	✓	Increase awareness	O
Backups and revocery	✓	Establish training frameworks	O
Physical security	✓	Develop working relationships (between CoPs!)	© 🛇 ©
System monitoring	✓	Manage third party risks	?
Wireless networking	✓	Identify third parties	?
Security patching	✓	Manage risks from vendors	?
Personnel background check	0	Manage risks from support organisations	?
Passwords & accounts	✓	Manage risks in the supply chain	?
Document security framwork	✓	Engage projects	\otimes
Security scanning	✓	Identifiy projects and include measures	O
Starters and leavers process	0	Establish ongoing governance	\otimes
Management of change	✓	Define roles and responsibilities	O
Security testing	✓	Develop & update policy and standards	O
Device connection procedures	✓	Ensure compliance with standards	0

✓: within current scope

⊘ : not within (current) scope

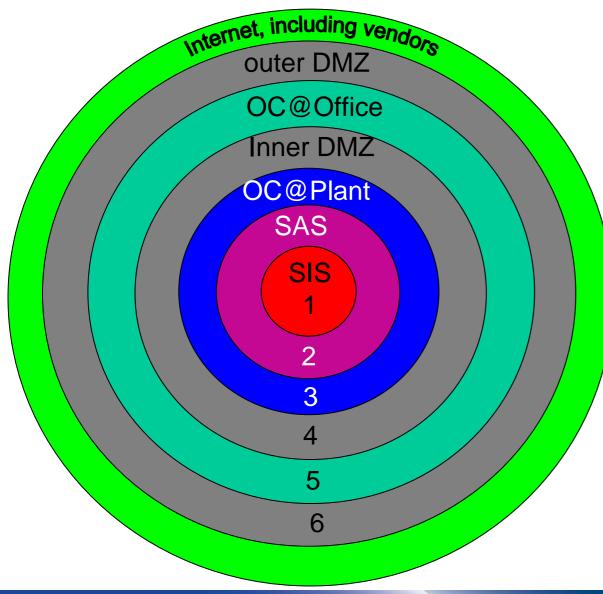

?: not decided

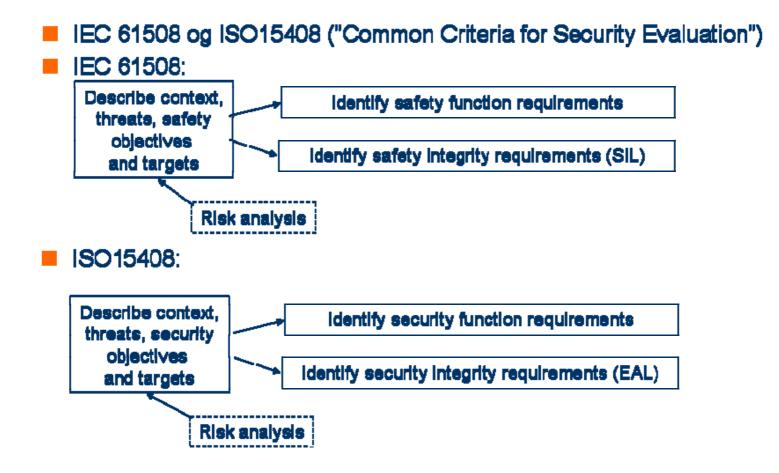
Table based on "Good Practice Guide – Process Control and SCADA Security", NISCC, 2005

NTNU

1. SeSa network architecture: Zone structure

- Zone structure seen from oil company (OC) point of view
- Vendors are "external"
- Vendors are supposed to have a similar, but simpler structure
- The zone structure is used to set up a (dynamic) <u>"standard list" of threats</u> <u>and countermeasures</u> to be considered at minimum
 - The zone structure reflects the Norwegian oil/gas context, but is also similar to more generic "secure SCADA" recommendations
 - E.g. NISCC

- SeSa : complementary to
 - SCADA security
 - O/G information security in general (e.g. OLF)


2. The security impact on SIL ?

- Meeting SIL requirements : based on three factors
 - The calculated Probability of Failure om demand (PFD)
 - Hardware redundancy due to IEC61508-2
 - Software requirements due to IEC61508-3
- It is reasonable to assume that a security threat may weaken only the assurances that are achieved by implementing the software requirements at a given SIL
 - A degradation table based on 61508-3 that reflects impacts from different (aggregate) security levels along the remote access path, could be construed (however not within current SeSa scope)
- Anyway, it would be (practically) wise to model the Probability of SIL Degradation (PSID) in two parts
 - 1. The likeliness that an adverse activity may reach the SIS border
 - Must be an "epistemic" probability
 - 2. The level of resistance towards SIL degradation built into the SIS itself
 - Which would provide some engineering options!
 - Stop the threat before SIS
 - "Tight system hardening" of SIS

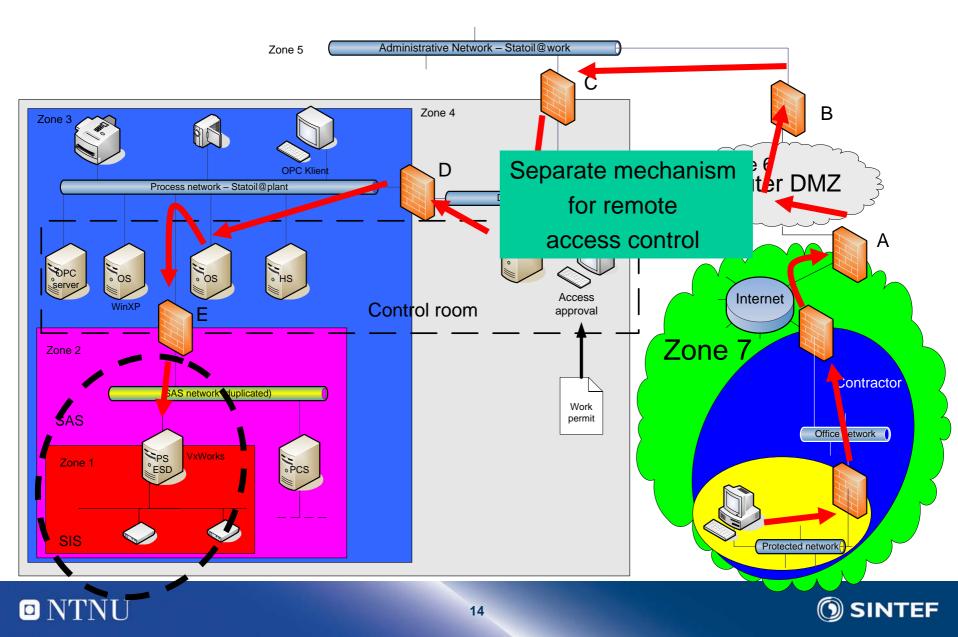
3. A possible strategy for "safe & secure" SIS

3. On IEC 61508 and ISO 15408

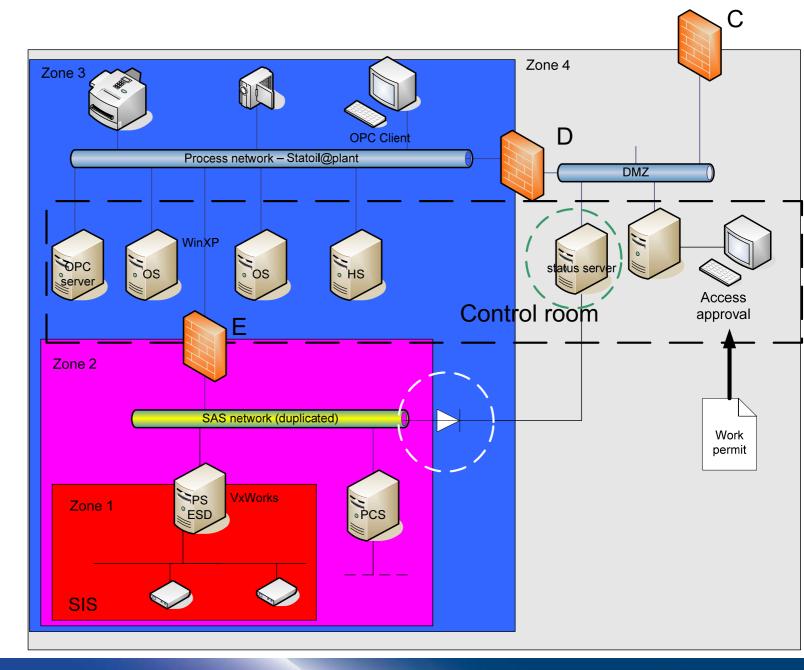
- Striking similarities
 - Assurances (SIL and EAL (Evaluation Assurance Level)) that signifies confidence in that the systems implement the proper functionality
 - Functionality derived from risk analysis
 - Both SIL and EAL assessments are based on good (and fairly similar) engineering principles for systems and software development
 - Although somewhat differently organised and expressed
- But also significant differences
 - ISO 15408: EAL assessment by third party
 - EAL could be reassessed for a given functionality
 - However within technological constraints (from COTS to "handmade")
 - ISO 15408 is less quantitatively oriented, and do not know "fail-safe"
- EAL and SIL levels could support each other mutually
- Could we adopt the ISO 15408 Protection Profile approach?
- Warning: EAL levels are costly to establish and maintain

3. Combining SIL and EAL KOSMOWSKI & al, ESREL 2006

nb! Security-functionality must be specified


	EAL 1	EAL 2	EAL 3	EAL 4	EAL 5	EAL 6	EAL 7
SIL 1							
SIL 2				Х			
SIL 3							
SIL 4						Х	

SeSa: Utilizing the parallells: SIL will "carry" similar assurance



Guideline : applying the method on a "typical" case, e.g

DNTNU

Residual (crucial) issues for SecureSafety

- ISO15408 and IEC 61508 : what can be achieved ?
 - EAL have a limited success compared to original scope
 - Due to cost and rigour
 - EAL levels may contribute to SIS resistance and/or shielding
 - Few examples of combined use
 - Poland (ESREL 2006)
 - Russia (CC 2006 conference)
- The "insider threat" must not be allowed to take undue command
 - The IT security will carry a strong imperative on this!
 - "Idiot-proofing" and "deskilling" may be detrimental to safety culture
- The security challenge must be addressed jointly, but under leadership
 - Suitable metaphors: Security value chains, Protection Profiles (ISO 15408)
 - Recognised in NISCC "Good Practice"
 - Third Party Risks
 - Ongoing Governance
- Sustained (secure) safety ("SIL i drift")

