Kjemisk og biologisk tilstand i sjøbunnen mer enn 20 år etter etablering av deponier for sulfidholdig gruveavgang i Jøssingfjorden og Dyngadjupet

> Morten T. Schaanning og Hilde Cecilie Trannum Norwegian Institute for Water Research (NIVA)

New knowledge on submarine tailings disposal (NYKOS) BIA-project ES532333

Some background information

Titania AS	Element	Concentration (µg g ⁻¹ d.w.)
 exploits world's largest limenite ore 7% of global production of ilmenite (FeTiO) 	Nickel	270
 3 million tons of tailings/year 	Copper	140
 2% sulfide minerals 	Cobolt	55
• 800 tons Ni	Chromium	49
• 400 tons Cu	Zinc	15
• 160 tons Co	Lead	<0.20
 remnants of production chemicals 	Cadmium	<0.05
	Mercury	0.013

Tailings are crushed rock – why bother?

- Benthic habitats are strongly affected by hypersedimentation of any material
- Mine tailings disposed of in sea deposits are *allochtonous* materials
- May differ from *autochtonous* materials with regard to:
 - Particle size (often very small)
 - Particle shape (freshly grinded, sharp edges, needles)
 - Organic, degradable material
 - Reactive minerals, e.g. sulphides
 - Remnant chemicals added in flotation and flocculation processes
- These are some of the issues addressed in NYKOS WP4: "Effects of mine tailings and associated chemicals on marine, benthic ecosystems". WP4 Task 6: "Sulphide tailings"

Morten Schaanning

Tromsø, 27.11.2018

Sampling and measurements

Field survey 17.-19.11.2015:

- Grab sampling for macrofauna
- Collection of boxcores

Box-core subsampling and measurements:

- metal analyses in sediments and pore water
- uptake of metals on DGT-probes
- sediment to water fluxes of trace metals (& O₂ and nutrient species)
- microelectrode profiles of O₂ and pH

Seabed visual appearance

Jøssingfjorden

Tromsø, 27.11.2018

Macrofauna

- 5 stations, 20 grab samples
- Sifted on 1 mm sieve
- ISO 16665:2014

р

0,1

0.05

• •

Dest Co the pr to the tr Co Co the set

Figure 2. Macrobenthos of Lowes Cove sampling stations monitored from August, 1981, through July, 1984. Abundant taxa are shown along with major modes of particle transport (arrows) associated with each. Vertical scale is accurate; horizontal scale is exaggerated. Fauna (left to right) are: Macoma balthica, Mya arenaria, Hydrobia totten, Heteromastus filifornis. Tharyx acutus, Clymenella torquata, Aglaophamus sp., Nereis succinea, Scoloplos spp., Streblospio benedicti, Polydora ligni, various oligochaetes, Corophium volutator, Eteone spp., Polycirrus medusa, and Saccoglossus kowalewskii.

NIVA

Potential for bioturbation in Dyngadjupet by «the conveyor belt deposit-feeder *Heteromastus filiformis*»

Table 4 Overview of ten most dominant taxa pr. station (average pr. 0,1 m²) in Jassingfjorden, 2015. Faunal group in parenthesis; A=Annelida, M=Mollusca, E=Echinodermata, P=Phoronida, C=Cnidaria,]N=Nemertea.

Taxon	St.3	Taxon	St.37	Тахол	St.9
Galathowenia oculata (A)	223	Phoronida indet (P)	325	Galathowenia oculata (A)	180
Kurtiella bidentate (M)	139	Kurtiella bidentate (M)	248	Thyasira sp.(M)	25
Amphiura filiformis (E)	105	Amphiura filiformis (E)	178	Phoronida indet (P)	19
Corbula gibba (M)	34	Amphiura sp. (E)	131	Paramphiname ieffreysii (A)	15
Ennucula tenuis (M)	25	Galathowenia oculata (A)	99	Eclysippe vonelli (A)	15
Pholoe baltica (A)	15	Corbula gibba (M)	38	Spiophanes kroveri (A)	14
Pista lornensis (A)	12	Edwardsia sp. (C)	31	Heteromastus filiformis (A)	13
Thyasira sp. (M)	12	Nemertea indet (N)	30	Trichobranchus raseus (A)	12
Chaetazone setosa (M)	10	Scoloplos armiger (A)	23	Irregularia juv. (E)	11
Ophiuroidea juv. (E)	10	Dosinia sp. (M)	18	Amythasides macroalossus (A)	9
Taxon	St.19	Taxon	St.55		
Heteromastus filiformis (A)	138	<u>Eclysippe vanelli</u> (A)	29		
Heteromastus filiformis (A) Invasira sp. (M)	138 51	Eclysippe vanelli (A) Spiophanes kroveri (A)	29		
<u>Heteromastus filifarmis</u> (A) <u>Ihvasira</u> sp. (M) <u>Galathowenia oculata</u> (A)	138 51 50	Eclysippe vanelli (A) Spiophanes kroveri (A) Amythasides macroglossus (A)	29 22 20		
Heteromastus filiformis, (A) <u>Ihvasira</u> sp. (M) Galathowenia oculata (A) Diplocirrus alaucus (A)	138 51 50 47	Eclysippe vanelli (A) Spiophanes kraveri (A) Amythasides macroalossus (A) Thyasira sp. (M)	29 22 20 20		
Heteramastus filifarmis, (A) Invasira sp. (M) Galathowenia oculata, (A) Diplocirrus alaucus, (A) Bolycirrus, sp. (A)	138 51 50 47 33	Eclysippe vanelli (A) Spiophanes kroveri (A) Amythasides macroalossus (A) Thyasira sp. (M) Heteromastus <u>filiformis</u> (A)	29 22 20 20 14		
Heteramastus filifarmis, (A) Invasira sp. (M) Galathowenia oculata, (A) Diplocirrus alaucus, (A) Polycirrus, sp. (A) Phalae, baltica, (A)	138 51 50 47 33 23	Eclysiope vanelli (A) Spiophanes kroveri (A) Amythasides mocroalossus (A) Thyasira sp. (M) Heteromastus <u>filiformis</u> (A) Pholoe baltica (A)	29 22 20 20 14 13		
Heteramastus filifarmis, (A) Invasira sp. (M) Galathowenia oculata, (A) Diplocirrus alaucus, (A) Polycirrus, sp. (A) Phalae, baltica, (A) Echysippe vanelli, (A)	138 51 50 47 33 23 18	Eclysiope vanelli (A) Spiophanes kroveri (A) Amythasides macroalassus (A) Thyasira sp. (M) Heteromastus filiformis (A) Pholoe baltica (A) Galathowenia oculato (A)	29 22 20 20 14 13 13		
Heteramastus filifarmis, (A) Invasira sp. (M) Galathowenia oculata, (A) Diplocirrus alaucus, (A) Polycirrus, sp. (A) Pholos, baltica, (A) Eclysippe vanelli, (A) Abyssoninoe, hibernica, (A)	138 51 50 47 33 23 18 18 18	Eclysippe vanelli (A) Salophanes, kroveri (A) Amythasides, macraglossus (A) Thyasira sp. (M) Heteromastus filif <u>ormis</u> (A) <u>Phalos, baltica</u> (A) <u>Salathowenia oculato</u> (A) Natomastus, latericeus, (A)	29 22 20 20 14 13 13 13		
Heteromastus filiformis, (A) Invasira sp. (M) Galatbowenia oculata, (A) Diplocirrus glaucus, (A) Pologe baltica, (A) Eclusipae vanelli, (A) Abussaninge, hibernica, (A) Natomastus, latericeus, (A)	138 51 50 47 33 23 18 18 18 18 15	Eclvsippe vanelli (A) Salophanes, kroveri (A) Amythasides, macroalossus (A) Thyasira sp. (M) Heteromastus filiformis (A) Pholos, baltica (A) Salathowenia aculata (A) Natomastus, latericeus. (A) Yoldiella sp. (M)	29 22 20 20 14 13 13 13 13 12		

Cu and Ni in sediment and pore water

EQS-values from, Guideline M608, 2016, Norwegian Environment Agency Harmonized with EU-legislation

Risk of «acute toxic effects from short term exposure» in STD sediments in Jøssingfjorden and Dyngadjupet

Morten Schaanning

Tromsø, 27.11.2018

Metal cycling in sediment surface layer

Fluxes from sediment to water

Leaching from land deposit = 7 500 g Ni day⁻¹

NIA

20 10 Nickel µg m⁻² day⁻¹ _ 0 2,0 Copper 0.0 4.0 Cobolt 2,0 Dyneadjupet Jossineforden Reference 0.0

Flux of nickel from sea deposits corresponded to 5.2% of leakage from land deposit

Mobilization of metals from sea deposit

Summary of conclusions

<u>Metals</u>

- 20 years after last deposition, concentration of tailings-associated metals are decreasing at the sediment surface
- slow recovery in Dyngsdjupet due to bioturbation and low sedimentation rates
- significant ongoing discharge from mining activity to Jøssingfjorden
- DGT-profile maxima revealed mobilization of Ni, Cu and Co near the sediment surface
- no upwards transport of dissolved metals from deep deposit layers
- Cu and Ni exceed MAC-EQS in sediment and pore water implies risk of acute toxic effects

<u>Fauna</u>

- all stations classified as «good» or «very good»
- Cu, fine fractions and depth identified as significant environmental variables explaining the seawards improvement of the macrofauna community

