Corrosion protection of offshore wind turbines

Astrid Bjørgum and Ole Øystein Knudsen

Wind Power R&D seminar – deep sea offshore wind, Trondheim, 21-22 January 2010

Offshore wind turbines – Challenges

- High corrosivity (marine environment)
- Erosion impacts due to salt particles and water droplets
- Mechanical loads due to floating ice
- Mechanical loads due to biofouling in submerged zone
- Variation in weather conditions
- Wind
- Waves
- Reduced accessibility
- Long and irregular inspection intervals
- High maintenance and repair costs

Corrosion protection – necessary from the very beginning

- Safety reasons
- Regularity in energy production

Environmental conditions

- Atmospheric zone
- Splash zone
- Sub-merged zone
- Inside the tower

Design of the structure

- Rotor blades
- Nacelle
- Tower
- Sub-structure
- Mooring

How can the turbine be protected?

Application of protective coating systems

- Steel tower
 - Sub-structure
 - Cathodic protection
 - Inside the tower
 - Keeping the internal environment dry
- Blades
 - Corrosion resistant composite materials
 - Nacelle
 - Corrosion resistant materials
 - Keeping the internal environment dry

Protective coatings – offshore oil & gas experience

- NORSOK M-501 specifies
- Pre-treatment quality
- Generic type of coatings
- Film thickness and number of coats
- Inspection during construction and service
- Experience indicates shorter lifetime of coatings recommended for the atmospheric zone than the 20 years designed life for offshore wind turbines

<table>
<thead>
<tr>
<th>Exposure conditions</th>
<th>Typical coating system</th>
<th>Life time expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric zone</td>
<td>Epoxy primer + UV resistant topcoat</td>
<td>20 years</td>
</tr>
<tr>
<td>Splash zone</td>
<td>2-coats polyester</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Rules and regulations

- International standards
 - IEC 61400 developed to ensure safety for systems and components
 - DNV DNV-OS-J101 is based on existing oil & gas standards and experience, synchronised with IEC
- National standards
 - Denmark
 - Germany
Are extended coating lifetimes possible?

- To ensure a lifetime corresponding to design life with a minimum maintenance requirement, DNV recommends
- Use coating systems with documented performance
- Prequalification (NORSOK M-501)
- Control that specified surface preparation and application conditions are followed

Challenges for offshore wind turbines

- Keep costs low
- Higher energy output
- Improved foundation technology
- Enhanced wind turbines
- Steel foundations seem to be competitive to concrete
- 50 years design lifetime is possible for steel structures
- What about the corrosion protection?

Coating systems in use

Offshore wind parks

- Zinc duplex systems
- Thermo-sprayed zinc-epoxy system
- Paint system

- Inside
 - Main paint coat alone
 - TSZ specified in splash zone on some towers
 - Generally limited information on coatings and coating performance

Corrosion protection on new projects

Hywind
- Coating systems on substructure based on
 - NORSOK M-501
 - Statoils experiences from offshore oil & gas
 - Standard tower/turbine
 - Not known, but probably according to ISO 12944, class C5-M
 - Tower and nacelle
 - Climate inside controlled by dehumidifiers

Sharingham Shoal wind park
- Substructure
 - Paints according to NORSOK M-501 in above splash zone
 - Cathodic protection (sacrificial anodes) only in submerged zone
- Tower
 - ISO 12944, class C5-M

- Below the air-tight deck
 - No coating applied inside
 - 6 mm corrosion allowance added

Corrosion protecting coating systems for offshore wind turbines

Demands
- Rapid production
- Low investments costs
- Low costs in service
- Long lifetime compared to lifetime experienced for offshore oil & gas installations
- Maintenance-free coating systems

Alternative protection systems today

Conventional coating system
- Experiences from offshore oil and gas installations
- First maintenance after 6-9 years

- According to Hempel
 - Existing NORSOK M-501 qualified coating systems have 20-25 years lifetime
 - A minor increase in the dry film thickness may increase the lifetime to 25 - 30 years

Including metalization
- Already used on offshore wind turbines
- Used by the Norwegian Public Roads Administration since 1965
- Rombak bridge showed no corrosion after 40 years
- Coating system
 - Thermally sprayed zinc (TSZ)
 - Corrosion protection paint
Our recommendations – existing coatings

- Recently, a life cycle cost analysis has been performed for
 - Conventional three-coats system
 - TSZ duplex systems
 - Metallization
 - 30-50% cost increase in construction
 - 30% LCC saved by avoiding maintenance

We recommend

- TSZ duplex system
- Atmospheric and splash zone
- Combined cathodic protection and epoxy coating in submerged zone
- Reduced application costs
 - Automation of coating application
 - Reduce the number of paint coats

New coating technology

- Self repairing coatings may improve corrosion performance of a coating system
 - Healing agents release from microcapsules
 - Chemical inhibiting species release in connection to coating damages

- Before such coatings can be used on offshore wind turbines we need further
 - Evaluation
 - Optimization

Thank you for your attention!