A model study of wind turbine interference

P.-Å. Krogstad and M. S. Adaramola
The Norwegian University of Science and Technology, Trondheim, Norway
Background

Model and measurements

Effect of turbine operating condition

Yaw effects

Conclusions
Turbine interaction reduces power output and increases dynamic loads.

Wake structure depends on turbine operating conditions. Is it always best to operate at turbine peak performance?

Wake may be deflected by yawing the turbine. How much power is gained or lost by yawing?

In wind parks, turbines interact!
Main purpose of investigation:
Measure turbine interaction under controlled laboratory conditions

- Model turbine designed using standard Blade Element Momentum theory
- Rotor diameter $D=0.9\text{m}$. Design tip speed ratio, $\lambda=6$
- Wind tunnel test section: Crosssection=$2\times2.7\text{m}$, total length=12m
- Power predictions performed with BEM and CFD (Fluent) software
Airfoil: NREL S826 14% thickness

Characteristics:

- Gentle separation due to trailing edge ramp
- Rapid transition on suction side due to small radius of curvature
- Low sensitivity to surface roughness
- Strong separation on lower side at negative angles of attack
2D predictions of S826 performance

Fully turbulent XFOIL predictions agree well with $k-\omega$ SST

C_L vs α

C_L vs C_D
Standard Blade Element Momentum theory gives blade geometry

View in streamwise direction

View in plane of rotation
Model turbine

Model and measurement systems

Model instrumentation

Model in wind tunnel
100,000 cells used to describe the blade and nacelle surfaces
3.5*10^6 grid points in 1/3 volume
Comparisons between predictions and measurements

Power coefficient vs tip speed ratio

Thrust coefficient vs tip speed ratio

Results

NTNU
Innovation and Creativity

Wind Power R&D seminar, Deep offshore wind
Trondheim, 20-21 January 2011

10
Measurements for 2 similar turbines
(Simplified wind farm experiment)

Two in-line turbines

Yawed upstream turbine
Effect of distance between turbines
Upstream turbine operating at peak efficiency

![Graphs showing power and thrust coefficients for different S/D ratios.](image)

- **Power coefficient, downstream turbine**
- **Thrust coefficient, downstream turbine**

Results
At a given distance, the output from the downstream turbine depends on the operating point of the first

\[S/D = 3 \]
Results

Total output compared to two unobstructed turbines

$S/D=3$

![Graph showing wind farm efficiency vs. tip speed ratio region]

$S/D=3$ and $\beta = 2^\circ$

Tip speed ratio region

Wind farm efficiency
Results

Effect of yawing upstream turbine
Upstream turbine operating at peak efficiency
S/D=3

Power coefficient, downstream turbine

Power coefficient, downstream turbine, compared to single, non-yawed turbine
Total output compared to two unobstructed turbines
Upstream turbine operating at peak efficiency

S/D = 3
Conclusions

- When two wind turbines are placed in-line and both operated at best efficiency, the output of a turbine at S=3D is less than 60% of that upstream.

- The power reduction is influenced by the wake characteristics from the turbine upstream and therefore by its operating point.

- By reducing the power extracted from the first, the TOTAL output may be increased.

- Yawing a turbine reduces its power by \(\cos^3 \gamma \). But it also deflects the wake which increases the output further downstream.

- Two turbines operating in-line at best efficiency may increase the total output from about 69% of two unobstructed turbines at zero yaw, to 78% when the first is yawed 30 degrees. (Figures taken for S/D=3.)
Reynolds number dependence

Turbine was designed for $\lambda = 6$ and $U_{\text{ref}} = 10\text{m/s}$
3D CFD details

- 1/3 of the rotor including the nacelle was simulated.
- CFD domain same as wind tunnel test section (-4.5D to 7.8D in streamwise direction, 2.9D in spanwise direction).
- \(k-\omega \) SST turbulence model with \(y^+ < 5 \) for first grid point.
- Structured boundary layer grid around blade up to 0.1c, tetrahedral grids used further out.
- QUICK and SIMPLEC schemes used for convective and pressure terms.
- 100,000 cells used to describe the blade and nacelle surfaces, 3.5*10^6 grid points used.
- 4CPU PC parallel processing, ≈ 24 hours computing time per case.
At design tip speed ratio ($\lambda = 6$)
Flow almost two-dimensional

- Flow mostly attached except at the trailing edge separation ramp
- Angle of attack close to 7° over most of the blade
- $C_L \sim 1.2$
Force distributions near design tip speed ratio

Good agreement between BEM and CFD

Tangential force

Streamwise force
At low tip speed ratio ($\lambda = 3$) the blade operates in deep stall mode and the flow is highly three-dimensional. BEM expected to fail severely.
Results

Force distributions for $\lambda = 3$

Significant differences between BEM and CFD distributions.

(Still C_p predictions virtually identical, but BEM C_T severely under-estimated)

Tangential force

Streamwise force