

dr.ir. Peter Bouwman

Diaphragm compressor

otary pressure

Capacity [Nm3/hr]

Piston compressor

Screw compressor

Turbo compressor

1000000

100

Discharge pressure [Mpa]

10

Mechanical Compression

- Minimum feed pressure
- Multi-stage configuration
- Interstage cooling
- Regular maintenance
- Noisy

Mission & Competence

- Mission: Develop innovative *silent* technologies and make available products for Purification and Compression of hydrogen gas
- **Core competence:** deliver high pressure Membrane-Electrode-Assembly (MEA) in stack with BOP system.

high pressure

Special membranes block hydrogen gas, but allow fast proton conductivity. Catalysed interfaces enable the indicated redox reaction equilibrium. An external power source drives the electric current and the internal hydrogen mass transport direction, controlling hydrogen gas flow.

EHC Compression Record

HyET successfully demonstrated a pressure record of 100 MPa pressure, single stage, on a laboratory cell to prove the concept of Electrochemical Hydrogen Compression (EHC)

de-Humidification

Like with air-conditioning, isothermal compression effectively dried hydrogen supply.

Product-Market relationship

Hydrogen Efficiency Technologies Hydrogen Refueling Station

HYE

Project PHAEDRUS developed and validated a scalable HRS design using the latest technologies including Electrochemical Hydrogen Compression (EHC) and hydrogen production On-Site .

Hydrogen Refueling Station

HyET engages field testing using MoHyTO systems to assess customer applications and increase Technology Readiness Level above 5.

Successful integration of ITM electrolyser and HyET EHC validated in field test in summer 2015.

Hydrogen Efficiency Technologies Hydrogen Refueling Station

Project Don Quichote realises 60 kg/day hydrogen production, compression and storage at the Colruijt distribution centre in Belgium for refuelling forklift trucks and fuelcell power generation.

Scaled to demand

Base Oriented Compressor Iso-Thermal Organisation (BOCITO) in design phase

3x MoHyTO systems currently operational

The basic stack and subsystem form the basic element, enabling modular upscaling on demand

HyET Hydrogen Efficiency Technologies SMART Energy Integration

Ultimately, our silent EHC device could enable home refuelling : storing hydrogen in a tank, integrating renewable energy sources together with the security of gas and grid connections by combining electrolysis and/or reformer and/or heating systems under SMART GRID control.

Purification is Included

Membranes that block high pressure hydrogen

also block other gas species from permeating

Selective Hydrogen extraction is achieved from different gas mixtures containing in various ratios CH_4 , CO_2 , CO, N_2 , H_2S .

Purification is Included

		Gasses >	H2	CO2	CO	CH4	H2O	
			%	%	%	%	%	
	supplied	WGS gas mixture	70.05	19.97	7.477	2.507	bubbler	
		as-received from supplier						
	purified	Permeating gas	99.551	0.024	0.002		0.423	
MEN								

concentration of CO is reduced >5000 fold, CO₂ is reduced >1000 fold No CH₄ observed in the permeate gas

Membrane properties

Optimum balance between the key membrane properties depends on the application

External H₂ Pressure

Assuming:

35 cm ∅ **70 MPa**

The EHC classifies as pressure vessel

• Spherical form factor with wall thickness:

Material	Yield Strength [Mpa]	Wall Thickness [mm]	including Safety factor x2.35 [mm]
IDPE	26	236	554
Steel (average)	250	25	58
Steel (high strength)	690	9	21
Aluminium	15	408	960
Aluminium alloy	400	15	36
itanium alloy	830	7	17
.ead	10	613	1439

Indicative values

Example to show how much material is required to keep such pressure in a sphere, depending on the materials used for its construction

Internal H₂ Pressure

Hydrogen gas pressure also pushes against the membrane within EHC

- 70MPa Compressive force in z-direction
- Tension forces created in xy-plane
- Impact on water management
- Cell closing pressure subjected on MEA
- Tenting into gas flow-field channels
- Puncturing / pinhole propagation

Technical solutions are called for when dealing with extreme pressures on soft matter

Variable cell-to-cell

Forces during compression and decompression could cause cell-to-cell variations, if too much room is available for displacement and deformations between cells.

EHC Test Results

Pressure increase (bara) and current density have minor influence on resistance

Membrane properties

Optimum balance between the key membrane properties depends on the application

HyET Hydrogen Efficiency Technologies

Impact of H₂ cross-over

Cross over of hydrogen measured with 430mV polarisation and nitrogen on anode

Impact of H₂ cross-over

Membrane types are normalised for thickness, temperature indicated.

Impact of H₂ cross-over

Temperature influences the hydrogen cross over through membrane significantly

Membrane properties

Optimum balance between the key membrane properties depends on the application

Schematic diagram

Equivalent circuit model of the process in the EHC to pump hydrogen using DC current

Schematic diagram

Equivalent circuit model of the process in the EHC to pump hydrogen using DC current

Compression Energy

H₂ Pressure Difference between Anode // Cathode [bar]

Nernst energy equals compression energy, applying to over-pressure as well as vacuum

... low voltages suffice

Incredible compression was achieved with little energy from only one battery

Schematic diagram

Equivalent circuit model of the process in the EHC to pump hydrogen using DC current

Schematic diagram

Equivalent circuit model of the process in the EHC to pump hydrogen using DC current

Compression Cycle

Potentiostatic hydrogen compression from 10 7 400 bar and back from 400 ≥ 10 bar

Isothermal Compression

Electrochemical pump need one single stage and have more isothermal compression

Pump rate flexibility

Variable hydrogen pumping rates feasible with one stack module

Pump energy [kWh/kg]

Hydrogen pump efficiency caluclated for different current densities

EHC energy requirement is a function of current density and pressure difference

EHC Pump Curves

Hydrogen pump curves caluclated for different current densities

Hydrogen pump curves plotted as a function of the current density (i.e. pump rate). Slow pumping is more energy efficient, and has little influence on pressure capability.

Total Energy Efficiency

Compression Energy Efficiency 1 --> 45 MPa

IF active area = 1 m^2

10 bar anode 450 bar cathode

Energy efficiency with HyET membrane during compression from 10 \rightarrow 45 MPa, plotted as a function of the Mass Flow rate (Current Density) and Cell Temperature.

Total Energy Efficiency

Energy efficiency with HyET membrane during compression from 1 \rightarrow 45 MPa, plotted as a function of the Mass Flow rate (Current Density) under best conditions.

Presentation Summary

HyET offers technology capable of simulteneous silent compression and selective purification of hydrogen gas

- **Purification** guarantees high quality hydrogen
- **Compression** up to 1000 bar output pressure feasible
- Multiple sources of hydrogen gas (mixtures) useable
- Scalable units enable growth with HRS market demand
- Compatible with "decentralised" Power and Smart Grid

Stand-alone 2 kg/day Electro-chemical Hydrogen Test unit available now for preliminary customer test trials (MoHyTO)

<u>info@hyet.nl</u> <u>www.hyet.nl</u> Leemansweg 15 6827 BX Arnhem The Netherlands

Pressure

Pure

www.HyET.nl

we thank everybody that contributed personally to building our foundation

Dutch Gas Roundabout

Source: http://www.rijksbegroting.nl/algemeen/gerefereerd/1/7/1/kst171191.html

"Gas roundabout" infrastructure initiated to secure energy supply security