Field Test Experience with Areva's PEM Electrolysis Systems

Kerstin Gemmer-Berk bilek
Technologieentwicklung PTDT-G
AREVA GmbH, Erlangen

Freiburg, 16/17. Feb 2016
AREVA in Germany short information

- Smart Grid Solar Project – AREVA Scope - The hydrogen chain
- Close up: The AREVA PEM electrolyser used in the project
- The PEM electrolyser in the field – measurements from the testfield Arzberg
AREVA in Germany

4,100 AREVA-Employees in Germany (41,000 worldwide)

Sales in Germany (2014)*: 1.1 Billion €
(Germany 29%, Export 71%) (8.3 Billion € worldwide)

* IFRS

4,100 AREVA-Employees in Germany (41,000 worldwide)
Sales in Germany (2014)*: 1.1 Billion €
(Germany 29%, Export 71%) (8.3 Billion € worldwide)
Content

AREVA in Germany short information

Smart Grid Solar Project – AREVA Scope - The hydrogen chain

Close up: The AREVA PEM electrolyser used in the project

The PEM electrolyser in the field – measurements from the testfield Arzberg
ZAE SMART GRID
Solar Project in Germany

www.smart-grid-solar.de
The hydrogen chain

„Green production“
• „green“ production of hydrogen (Solar, wind turbine)

→ H_2/O_2 production via water electrolysis
• Hydrogen as energy storage (electricity storage, thermal use, grid stabilization)

→ Multiple-use applications
• Hydrogen as a substitute of fossil fuels (Cars, Fuel Cell utility vehicles, Electricity-/H$_2$ – gas station)
• Power to Gas
• Power to Chemicals
The hydrogen chain at the Smart Grid Solar Project

75 kW PEM Elektrolyzer
Hydrogen production

- Smoothing of fluctuating PV-grid fed in profiles
- Dynamics of a PEM ELY
- Efficiency at partial load
- Combination of short/long-term storage components

300 kWh LOHC* Storage
Long-term storage

- Performance of LOHC storage
- Steady hydrogen production for seasonal storage
- Cycle stability of LOHC
- Degradation LOHC
- Technology field test (TRL 7)

5 kW Fuel Cell
Reconversion

- Dynamics of PEM fuel cell
- Extension of feed-in times (virtually)
- Combination of short/long-term storage components

*) LOHC = Liquid Organic Hydrogen Carrier
The hydrogen chain at the Smart Grid Solar Project

Electrolyzer
- **η = 70%**
- 30 bar
- 50 kW – 75 kW
- Hydrogen (H₂)
 - 10-15 Nm³/h
- Water (H₂O)
 - 10 l/h

Hydrogenation
- **4 kWh/kg H₂ binding energy**
- 1.3 kg H₂ / h = 24 l LOHC
- Oxygen from ambient air (O₂)
- LOHC storage (scalable)
 - 150 l = 300 kWh

Dehydrogenation
- **9 kWh/kg H₂ binding energy**
- 0.3 kg H₂ / h = 8 l LOHC
- Water (H₂O)
- Waste (Heat)

Fuel Cell
- **η = 50%**
- 5 kW
- 1.3 bar
- Electricity 5 kWh
- Water (H₂O)
- Waste (Heat)

Electricity (renewable)
- Wind, PV, etc.
- 50 kW – 75 kW
- Waste (Heat)

Oxygen (O₂)
- 5-7.5 Nm³/h
75 kW PEM Elektrolyseur

Wasserstoffverzeugung

300 kWh LOHC* Speicher

Langzeitspeicher

5 kW Brennstoffzelle

Rückverstromung

Themen für die Komponententests:

- Glättung von unsteten PV Einspeiseprofilen
- Dynamik eines PEM ELY
- Effizienz unter Teillast
- Kombination Kurzzeit-Langzeit Speicherkomponenten

*) LOHC = Liquid Organic Hydrogen Carrier

- Betriebsverhalten LOHC Speicher
- Konstante Wasserstoffproduktion als Saisonalspeicher
- Zyklustabilität LOHC
- Degradation LOHC
- Technologie Feldtest (TRL 7)

Dynamik der PEM BZ
- Virtuelle „Einspeiseverlängerung“ (in die Nacht)
- Kombination Kurzzeit-Langzeit Speicherkomponenten

The hydrogen chain at the Smart Grid Solar Project
Content

- AREVA in Germany short information
- Smart Grid Solar Project – AREVA Scope - The hydrogen chain
- Close up: The AREVA PEM electrolyser used in the project
- The PEM electrolyser in the field – measurements from the testfield Arzberg
Details and characteristics of the electrolyser

<table>
<thead>
<tr>
<th>No.</th>
<th>Characteristics Stack design: 65 cells, active surface 300cm²</th>
<th>Measured values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nominal flowrate: 10Nm³ H₂/h (370 amp in the stack)</td>
<td>370 amp</td>
</tr>
<tr>
<td>2</td>
<td>Maximum flowrate: 15Nm³ H₂/h (550 amp in the stack)</td>
<td>520 amp /14.2Nm³ H₂</td>
</tr>
<tr>
<td>3</td>
<td>Nominal Pressure: 35barg H₂ for 75kW</td>
<td>80kW 35 barg H₂, 34 barg O₂</td>
</tr>
<tr>
<td>4</td>
<td>Overall electrical consumption < 5kWh/Nm³ at nominal flowrate</td>
<td>ok</td>
</tr>
<tr>
<td>6</td>
<td>Operating range (in % of nominal flowrate): 10-150%</td>
<td>ok</td>
</tr>
<tr>
<td>7</td>
<td>Power from local grid connexion 400V TRI</td>
<td>395V</td>
</tr>
<tr>
<td>8</td>
<td>CE certification</td>
<td>ok</td>
</tr>
</tbody>
</table>
Characteristics measurements from factory acceptance test

<table>
<thead>
<tr>
<th>N°</th>
<th>Step</th>
<th>Supply</th>
<th>Value obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start up set</td>
<td>Time (s) to contactor (first current on the stack) closure to reach set power (50 kW), starting at 0barg</td>
<td>~ 95sec</td>
</tr>
<tr>
<td>2</td>
<td>Power range</td>
<td>Average value of cells voltage at 550 amp (74,7kW, 14,11Nm³/h, 524A)</td>
<td>130V/65 cells</td>
</tr>
<tr>
<td>3</td>
<td>Stand by >12h</td>
<td>Pressure loss during longterm hot stand-by H₂ and O₂ pressure curves in function of time</td>
<td>H₂ < 2.5 bar</td>
</tr>
<tr>
<td>4</td>
<td>Hot stand-by max</td>
<td>Time (s) to contactor (first current on the stack) closure to reach maximum power (75 kW), starting at 35barg</td>
<td>~14sec</td>
</tr>
<tr>
<td>5</td>
<td>Cold stand-by max</td>
<td>Time (s) to reach 35barg at maximum power (75kW)</td>
<td>~ 5min 44sec</td>
</tr>
</tbody>
</table>

- **No 3**:
 - H₂: Pressure loss overnight < 2.5 bar
 - O₂

- **No 5**:
 - From 0 to 35 barg ~ 5min
 - H₂
 - O₂
 - kW

Field Test Experience with Areva's PEM Electrolysis Systems KGB 16/17.02.2016 – RESTRICTED AREVA © AREVA - p12

All rights are reserved, see liability notice.
Content

- AREVA in Germany short information
- Smart Grid Solar Project – AREVA Scope - The hydrogen chain
- Close up: The AREVA PEM electrolyser used in the project
- The PEM electrolyser in the field – measurements from the testfield Arzberg
Delivery and installation of the PEM Electrolyzer, 65 cells, 300cm², 35 bar
Measurements from the testfield in Arzberg: Dynamics: Following the PV-Profile

Nachfahren eines PV-Profils vom 13.05.2015

The PEM electrolyzer follows volatility without problems
Dynamic H2 und O2 production from „green electricity“
Measurements from the testfield in Arzberg:
Efficiency complete system vs. hydrogen production

High efficiency over a large operating range, highest efficiency at the design point

Step profile for different set points

Design point (10Nm³/h; 73% eff)

Effizienz Gesamtsystem Hocheffizienter Betriebsbereich (>70%) H2 Produktion

All values based on heating value (HHV – 3.54 kWh/Nm³)
Measurements from the testfield in Arzberg:

Energy consumption stack vs total system
Measurements from the testfield in Arzberg: U-I curves and temperatures

- Each measurement = 1 dot
- T values taken every second at the stack outlet
- Cold temp = start ups
- Isoline stripes = process control keeps the DC power to the set value because \(U_{DC} \cdot I_{DC} = \text{const} \)
Thank You for the attention!

Kerstin GEMMER-BERKBILEK
Technology Development

AREVA GmbH
Paul-Gossen-Straße 100
D- 91052 Erlangen
Mob: +49 151 65614581 –Tel: +49 9131 900-95221
Kerstin.Gemmer-Berkbilek@areva.com
www.areva.com
Editor and Copyright [2016]: AREVA GmbH – Paul-Gossen-Straße 100 – 91052 Erlangen, Germany. It is prohibited to reproduce the present publication in its entirety or partially in whatever form without prior written consent. Legal action may be taken against any infringer and/or any person breaching the aforementioned prohibitions.

Subject to change without notice, errors excepted. Illustrations may differ from the original. The statements and information in this brochure are for advertising purposes only and do not constitute an offer of contract. They shall neither be construed as a guarantee of quality or durability, nor as warranties of merchantability or fitness for a particular purpose. These statements, even if they are future-orientated, are based on information that was available to us at the date of publication. Only the terms of individual contracts shall be authoritative for type, scope and characteristics of our products and services.
Field Test Experience with Areva's PEM Electrolysis Systems

Kerstin Gemmer-Berk bilek
Technologieentwicklung PTDT-G
AREVA GmbH, Erlangen

Freiburg, 16/17. Feb 2016