

The Impact of Non-uniform Electrodes on Performance and Gas Cross-over

Ed Wright, Emily Price, Jonathan Sharman Johnson Matthey Technology Centre

Challenges for CCMs in PEMWE

Main target for PEMWE is cost reduction

- CCM one of the main focusses of cost reduction
 - Thrifting PGM content in catalyst layers
 - Novel catalysts both supported and unsupported being developed
 - Reducing membrane resistance
 - Thinner membranes
 - Reducing hydrogen crossover
 - Modifying chemistry / adding recombination catalyst
- Need to do above while maintaining performance and durability
- Porous titanium current collectors also add a significant cost
 - Tighter tolerances significantly increase costs
- CCM needs to interact well with the current collector to allow reduction in hardware costs

© 2016 Johnson Matthey Fuel Cells Ltd

Cell sealing of typical single cell

- Cell compressed by 9 bolts on edge, using fixed torque
- Assembly carried out at room temperature and with dry MEA
- Heating cell and hydrating MEA will lead to expansion of different components and so may affect compression

Sinter thickness

All sinters nominally 1 mm thick

GKN sinters have 40 μ m variation within a sheet and 90 μ m across the batch Mott sinters have <10 μ m variation within a sheet and ~10 μ m across the batch Weight / Density shows similar trends

Surface profiles of typical sinters

JM Solution Johnson Matthey

- Preparation method can have a significant effect on sinter
 - Cutting method can affect long range shape (bowing)
- Both sinters have similar roughness values
 - Ra values of 10.9 and 10.2 for GKN and Mott respectively
 - Gravity sintered (Mott) gives similar roughness above and below surface
 - Pressure sintered (GKN) has flat top surface with deep pores

© 2016 Johnson Matthey Fuel Cells Ltd

Complete anode plate assembly

- Step height can vary up to 400 µm from plate depending on sinter and orientation
- Hard for < 200 μ m CCM to accommodate such variation
- What are the effects of the non-uniform compression?

© 2016 Johnson Matthey Fuel Cells Ltd

Experimental setup

- Baltic fuel cell QCF25 cell hardware used
 - 5 x 5 cm active area
 - Ti flowfield on anode and C flowfield on cathode
 - Ti sinter as anode current collector
 - SGL 10BB carbon paper as cathode current collector (420 µm thick)
 - Compression measurement device fitted
 - Piston to control clamping force on active area
 - Linear transducer for displacement monitoring
 - Current mapping included
 - S++ system fitted behind cathode flowfield
 - 100 segments measured
- In house test station operating at 60 °C, ambient pressure, 500 ml min⁻¹ water flow rate
 - Hydrogen crossover measured with TCD
- Tests carried out with in-house MEAs

Effect of increased compression

- MEA: IrO₂ (2mg cm-2) | N117 | Pt black (1 mg cm-2)
- Operation at 500 mA cm⁻² (12.5 A total)
- Compression increased from 0.5 5.5 bar $(0.16 1.72 \text{ N mm}^{-2})$ in 0.5 bar steps
- Cell voltage drops by ~ 100 mV at 0.5 A cm⁻² operating point as compression increased
 - Displacement of 60 μm occurs as clamping force increased likely to be carbon paper compressing

© 2016 Johnson Matthey Fuel Cells Ltd

Effect of increased compression - crossover

Johnson Matthey

- Crossover decreases as compression increased
- All other cell parameters kept constant
 - Crossover not expected to be affected by compression / operating voltage

NOVEL

Current mapping during compression

- Compression stepped from 0.5 bar to 5.5 bar in 10 steps of 120s
- Histograms show number of segments (%) operating within a current range
 - Far left bar indicates number of inactive segments
- At low compression 70% is inactive, at 2.75 bar 30% is inactive and at 5.5 bar ~ 10% is inactive

Segmented polarisation curve 2 bar compression

- Uncoated Mott sinter used with 10BB cathode GDL
 - Test carried out after compression test so GDL may be compression set
- Significant performance difference between segments
- Some segments are saturated so not reporting true current density
- ~30% of area inactive

© 2016 Johnson Matthey Fuel Cells Ltd

JM 🛠

Segmented polarisation curve 5.5 bar

JM& Johnson Matthey

- Significant improvement in uniformity
- Still significant region inactive (15 20%)
- Fresh GDL may improve uniformity further

© 2016 Johnson Matthey Fuel Cells Ltd

Overall Polarisation

- Crossover can be seen to increase as current density increases
 - Typically expect fixed diffusion through membrane and so lower crossover at higher currents (increased O₂ production)
 - Effect more dramatic for lower compression / less uniform layer

Performance of supported Ir catalysts

- Layers with lower catalyst loadings or novel OER catalysts can show increased sensitivity to compression / contact resistance
- Effects cannot always be removed by increasing cell compression
 - Over compression can crush carbon papers or crack plates

© 2016 Johnson Matthey Fuel Cells Ltd

NOVEL Novel materials and system designs for low cost, efficient and durable PEM electrolysers

Data provided by SINTEF

Effect of sinter on catalyst layer

JMX Johnson Matthey

- Larger gaps in sinter may lead to inactive regions
- Effect will be exaggerated for thin layers
- Effect will be exaggerated for low conductivity layers
- Low activity regions may experience high voltages increasing oxidation of sinter and so rapidly deactivating completely

© 2016 Johnson Matthey Fuel Cells Ltd

Effect on low loading layers

JMX Johnson Matthey

- Conventional IrO₂ layer printed at ~ 2 mg_{Ir} cm⁻²
- Novel IrO₂ layers printed at ~ 1 mg_{lr} cm⁻²
- Thin reinforced membrane with recombination catalyst used for all samples

- Lower loading catalyst layers more sensitive to cathode catalyst layer
- Pt on C cathode will be thicker and more compressible than Pt black

© 2016 Johnson Matthey Fuel Cells Ltd

Current Mapping

 IrO_2 black 2 mg_{Ir} cm⁻² anode, Pt black cathode, recom cat membrane, 5.5bar, $60^{\circ}C$ Novel $IrO_2 \simeq 1 \text{ mg}_{Ir} \text{ cm}^{-2}$ anode, Pt black cathode, recom cat membrane, 5.5bar, 60°C

Novel $IrO_2 1 mg_{Ir} cm^{-2}$ anode, Pt/C cathode, recom cat membrane, 5.5bar, $60^{\circ}C$

- Current maps taken from highest current density
- Conventional 2 mg_{Ir} cm⁻² layer shows most uniform activity
- Novel 1 mg_{Ir} cm⁻² anode with Pt black cathode shows worst uniformity
 - Novel 1 mg_{Ir} cm⁻² anode with Pt on C cathode more uniform but not as good as thicker commercial IrO₂ layer
- Cathode / overall CCM thickness may be important for good contact

© 2016 Johnson Matthey Fuel Cells Ltd

Conclusions

- Poor compression leads to non-uniform PEMWE performance
- Gas crossover increases with decreasing uniformity
 - Crossover seen to increase at high current densities for non-uniform layers
- Sinters vary considerably in thickness, curvature and contact with CCM
 - Thickness variations of similar magnitude to total CCM thickness
 - Poor compression / contact leads to non-uniform performance
- Novel OER catalysts or reduced loadings will exaggerate the effects
- Cathode type / thickness can help improve uniformity / crossover
- Thinner membranes will reduce the ability of the CCM to compensate for hardware variations
- Machining components to give < 100 μm variation for plate / current collector combination not practical
- CCM / Hardware interactions need to be well understood to help reduce costs

© 2016 Johnson Matthey Fuel Cells Ltd

Acknowledgements

- NOVEL Project partners particularly
 - Magnus Thomassen, Tommy Mokkelbost and Alejandro Oyarce Barnett at SINTEF
 - Tom Smolinka and Thomas Lickert Fraunhofer ISE

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° [303484] (Novel)

