

AST PROTOCOLS FOR PEM WATER ELECTROLYIS : INSIGHT ON PERFORMANCES AND COMPONENTS DEGRADATION

CEA - French Alternative Energies and Atomic Energy Commission

Inks formulation, electrochemical characterisations

• High performing and durable PEM WE are need.

European KPI objectives*

Table 2: Expected evolution of key electrolyser system performance indicators

	2015	2020	2025	2030
System cost (€/kW)	950–1,600	600–1,000	600-900	600-800
Indicative stack size (MW)		1-3 MW		2-4 MW
Indicative large system size (MW)	≈3	≈5	≈6	≈7
Electrical input (kWh/kg _{H2})	≈56	≈52	≈51	≈50
Stack life (khr)	65-80	75-95	75-95	80-95

A linear voltage degradation of 1μ V/hr translates into an additional electrical energy input of ~2 kWh/kgH₂ after 60,000 hours of continuous operation.

* FCH JU Report « Development of Water Electrolysis in the European Union » L. Bertuccioli, Feb 2014

Most of PEM WE show a degradation voltage between 0,5 and 15 μV/h

• PEM WE suffer from less intensive researches on durability and degradation than PEM FC

Short introduction on main degrading components in PEM WE

Analytical Methods and main outcomes

Summary

AST-1: 48h AST signal @ 90°C repetaed at least 4 times

In situ analyses

2nd international workshop on durability and degradation issues in PEM electrolysis cells and its components Fouda-Onana Frédéric | 12

NOVEL

NOVEL

Conclusion from Pol.Curve

Ageing more important at high current (caused by the resistance).

Cannot conclude without further analyses

NOVEL

Ardizzone et al. Electrochimica acta vol 35 nº 1- 263-267 (199

Cyclic voltammetry

Qtot (C/cm2) X Qouter (C/cm2)

R_{HFLoop} decrease with polarization (charge transfert behaviour)

R_{LFLoop} decreases with polarization (charge transfert behaviour)

NOVEL

NOVEL

With ageing R_Ω decrease at high current density

R_{HFLoop} and R_{LFLoop} do not change with ageing (consistent with activation part Pol.curves)

The increase of R_{pol} is due to R_{Ω}

Analyses from Bode representation

$f_c = 1 / (2\pi RC)$

Effect of the polarization reduces the charge transfer resistance (LF_{loop}) that increases Cuttoff Frequency

Effect of the ageing reduces the Cdl that increases Cutt-off frequency (consistent with the outer capacitance diminution with the ageing)

NOVEL

Analytical Methods and main outcomes

-1.8

BoL AST-1 @ 2 A/cm2

Analyses from Bode representation

_30 μm lost 1500 h (20 nm/h)

AST-2 and AST-3 more degrading than AST-1

NOVEL

AST-3 do not age more the membrane than AST-2 (contrary to expectations)

liten ceatech

Analytical Methods and main outcomes

 $79 \,\mathrm{m}\,\Omega\,.\mathrm{cm}^2$

a «soft material ».

// Interface

GDL // fresh CC) // BP

CC/IrO₂ // BP: IrO₂ facing CC in contact with the BP

EoL AST – 2

NOVEL

EoL AST-4

AST-2 able to thin the membrane and oxidized CC Most complete ageing protocols from those tested

NOVEL

liten Ceatech

Acknowledgements

<u>CEA :</u>

S. Chelghoum D. Thoby

Fraunhofer :

A. Georg

<u>JM :</u>

E. Price

E. Wright

<u>European funding:</u>

Under grant agreement n° [303484] for the Novel project

AST PROTOCOLS FOR PEM WATER ELECTROLYIS : INSIGHT ON PERFORMANCES AND COMPONENTS DEGRADATION

2nd international workshop on durabiltiy and degradation issues in PEM electrolysis cells and its components| Fouda-Onana Frédéric

Thank you for the attention