

Lorenz Gubler :: Paul Scherrer Institut

Membranes for Water Electrolysis -Target-Oriented Choice and Design of Materials

Durability and Degradation Issues in PEM Electrolysis Cells and its Components February 16, 2016 :: Fraunhofer ISE, Freiburg, Germany

NOVEL Novel materials and system designs for low cost, efficient and durable PEM electrolysers

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n°303484.

C3

Introduction

Loss terms in PEM electrolysis

Selection Criteria for Membranes

- A simple performance model
- Resistance gas crossover tradeoff
- Membrane development within NOVEL

Durability Aspects

- Radical-induced degradation
- Thermal stress test

Conclusion

Loss Terms in PEM Electrolysis

Ohmic (mainly membrane) losses dominate at high current density

K. Ayers et al., *ECS Trans.* **33**/1 (2010) 3

Simple Electrolysis Model

Reducing Membrane Thickness

*η = 74% (HHV)

Reducing membrane thickness allows much higher current density at given cell voltage (i.e., efficiency)

Reducing Membrane Thickness

Residual ohmic resistance R_0 may increase over time due to passivation of Ti current collector and bipolar plate

Lewinski et al., ECS Transactions 69 (2015) 17, 893

There is little influence of the pressure on the polarization behavior of the electrolysis cell

A. Reiner, Siemens

Area Resistance and Membrane Thickness

Area resistance R_{Ω} (Nafion with EW 1'100):

$$R_{\Omega} = R_0 + R_m$$
$$R_m = \frac{\delta}{\sigma}$$

fitting parameters: $R_0 = 30 \ \Omega \cdot cm^2$ $\sigma = 146 \ mS/cm$ Resistance - Gas Crossover Tradeoff

fit H₂ crossover
$$i_x$$
:
 $i_x = 2F \frac{P(H_2)}{\delta} p$
 $\rightarrow P(H_2) = 4.5 \cdot 10^{-13} \frac{\text{mol} \cdot \text{cm}}{\text{cm}^2 \cdot \text{s} \cdot \text{kPa}}$

fit area resistance R_{Ω} (EW 1'100):

$$R_{\Omega} = R_0 + \delta / \sigma$$

 $\rightarrow R_0 = 30 \ \Omega \cdot \text{cm}^2, \ \sigma = 146 \text{ mS/cm}$

A. Albert, ACS Appl. Mater. Interf. 7 (2015) 22203

Gas Crossover - Minimum Current Density

¹ M. Schalenbach et al., *J. Phys. Chem. C* **119** (2015) 25145
 ² T. Sakai et al., *J. Electrochem. Soc.* **132** (1985) 1328
 ³ Z. Zhang et al., *J. Membr. Sci.* **472** (2014) 55
 ⁴ fit of H₂ crossover data

Nafion gas permeabilities

$P(H_2)$ mol·cm	$P(O_2)$ mol·cm	Ref.
стъякра	cm ² ·s·kPa	
5.32·10 ⁻¹³	2.52·10 ⁻¹³	1
5.10·10 ⁻¹³	2.70·10 ⁻¹³	2
1.8·10 ⁻¹³	8.0·10 ⁻¹⁴	3
4.50·10 ⁻¹³	n/a	4

 $P(H_2) \approx 2 \times P(O_2)$

$$c(O_2 \text{ in } H_2) = p \cdot \frac{P(O_2)}{\delta} \cdot \frac{2F}{i}$$

$$c(H_2 in O_2) = p \cdot \frac{P(H_2)}{\delta} \cdot \frac{4F}{i}$$
$$\approx 4 \times c(O_2 in H_2)$$

1. PFSA membranes improve gas barrier properties

2. Alternative membranes

choose materials with intrinsically better combination of resistance and gas permeability

Reinforced PFSA Membranes with Recombination Catalyst

JM PFSA membrane:

(adapted automotive membrane)

- thickness ~60 μm
- reinforced
- containing PGM-type H₂-O₂
 recombination catalyst

- Improved performance
- lower gas crossover

Ion Conducting Graft Copolymer Membranes

(e.g. crosslinker, barrier groups)

L. Gubler, Adv. Energy Mater. 4 (2014) 1300827

Gas permeation measured by mass spectrometry method*

Grafted membrane shows much lower gas crossover

* Z. Zhang et al., J. Membr. Sci. 472 (2014) 55

A. Albert et al., ACS Appl. Mater. Interf. 7 (2015) 22203

PAUL SCHERRER INSTITUT

Cell Performance with Grafted Membrane

Grafted membrane vs. Nafion 117

- similar performance
- lower gas crossover (factor × ~2)

Further MEA (CCM) development required

Can We Do Better Than That?

Operational Range (Turndown Ratio)

- low Ohmic resistance
- low crossover

- wider range of operating current density
- suitable for dynamic operation

Cell tests to be done

Durability

Membrane Degradation Mechanisms

Metal ion contamination (reversible)

- Water supply issue
- Corrosion of bipolar plates
- Core shell / alloy catalysts

Loss of mechanical integrity:

- Mechanical stress, creep
- Overall membrane thinning
- Local thinning

Chemical degradation:

- H₂, O₂ crossover
- H₂O₂ and radical formation
- Fluoride release

Membrane Degradation Mechanisms

Need accelerated stress tests

K. Ayers et al., *ECS Trans.* **33**/1 (2010) 3

Contributions within NOVEL

Investigation of chemical degradation by measuring fluoride emission rate (FER) coupled to a degradation model

FER in the fuel cell*:

FC under load: 0.01 - 0.1 μ g·cm⁻²·h⁻¹ FC under OCV: 1 - 10 μ g·cm⁻²·h⁻¹

Shape of curve with maximum at intermediate current density well-reproduced by model

M. Chandesris et al., *Int. J. Hydrogen Energy* **40** (2015) 1353 * FER compilation in L. Gubler et al., *J. Electrochem. Soc.* **158** (2011) B755

Contributions within NOVEL

Thermal Stress Test (TST): exposure of membrane to 90°C for 5 days

post-test analysis of

membrane

- FTIR
- IEC

• SEM/EDX

solution

- UV-Vis
- Ion chromatography

Membrane	IEC loss (%)	
grafted, initial design	44.2 ± 0.8	
down-selected grafted	4.2 ± 0.5	
Nafion 117	< 1	

- Operation over large current density range desired
- Resistance crossover tradeoff for a given ionomer type
- Strategies for improved membranes in NOVEL
 - Modified PFSA membranes (reinforced, with recombination catalyst)
 - Other ionomer classes with superior combination of resistance and gas barrier properties
- Durability aspects tackled within NOVEL
 - Radical induced degradation: model and experiment
 - Thermal stress test at 90°C in water

