First International Workshop

Durability and Degradation Issues in PEM Electrolysis Cells and its Components

Degradation issues in NEXPEL and NOVEL

Magnus Thomassen, Luis Colmenares, SINTEF

Outline

- Background
 - Why are we here?
- NEXPEL and NOVEL
 - A brief introduction to PEM degradation activities
- Degradation mechanisms in PEM electrolysers
 - Membranes
 - Catalysts
- First steps in developing AST protocols for PEM electrolysers
- Summary

Progress in efficiency and durability (PEM)

HYDROG(E)NICS

FIGURE 8. Life Test Data for Giner, Inc. Oxygen-Anode, Liquid Water Feed Electrolyzer (IRAD-014) (4-cell stack) (54°C; 6.9 MPa, H₂/Ambient O₂; Nafion 120, 300 μ m thickness, 1200 EW; 4 mg Pt/cm²-H₂ Side, 4 mg Pt-Ir/cm²-O₂ Side) (27)

Time (h)

A.B. LaConti, L. Swette, in:, Handbook of Fuel Cells, John Wiley & Sons, Ltd, 2010

E. Anderson, in:, Symposium - Water Electrolysis andHydrogen as a Part of the Future Renewable Energy System,2012

Challenges

- Increased efficiency
 - Higher temperature
- Lower capital costs
 - Reduction of PGM loadings
 - Thinner membranes
 - Simpler systems (water purification, etc.)
- Intermittent operation
 - Temperature and pressure cycling
- High (differential) pressures

Risk of degradation increases significantly

15 years earlier:

Minimal loss in performance after over 3000 h of stack operation

Fig. 17. The individual performance of the four cells in a Nafion 117 membrane based stack containing low platinum loading Type A cathodes (0.5 mg Pt/cm², 40 w/o Pt/XC72R) and Type B anodes (0.3 mg Pt/cm², 20 w/o Pt/10 w/o Ru/XC72R). The stack is operating at 538 mA/cm² on simulated reformate/air (with short interruptions to test the performance on H₂) at 5.4/5.4 atm and 1.3/1.8 stoichiometry with a 2% air bleed into the reformate.

D. P. Wilkinson, G. A. Hards et al, J. Electrochem. Soc. 144, 11, (1997)

Background

Number of hits in Web of Knowledge on the topics "PEM fuel cell degradation" or "degradation of PEM fuel cells" vs "PEM electrolys(z)er degradation" or "degradation of PEM electrolys(z)er"

www.nexpel.eu

NEXPEL main objectives:

Develop and demonstrate a PEM water electrolyser integrated with Renewable Energy Sources (RES):

75% Efficiency (LHV), H₂ production cost ~ €5,000 / Nm³h⁻¹, target lifetime of 40,000 h

NOVEL

Goals of the Novel project:

- 1. Reduce capital costs of main stack components
- Increased electrolyser performance with;
 No impact on lifetime (> 40,000h operation)

NOVEL www.novelhydrogen.eu

- 3. Design of cost efficient systems with reduced impact on electrolyser lifetime
- 4. Improved understanding of degradation mechanisms in PEM electrolysers
- 5. <u>Development of accelerated stress test protocols for lifetime evaluation and durability</u> <u>investigation of novel components.</u>

8

Degradation mechanisms and AST protocols for

Membranes Catalysts

Membrane - Mechanical degradation

- Perforations, pinholes, cracks or tears
- Causes
 - In plane tension/compression due local drying/swelling
 - Inadequate heat or gas removal
 - Non-uniform compression / current density
 - membrane defects from manufacturing or improper MEA assembly
- Often leads to early life failure (catastrophic?)

Fukuoka electrolyser accident

Membrane - Chemical Degradation

Membrane chemical degradation- Earlier observations

Fig. 6. (a) View on membrane as arranged for automatic measurement of the thickness distribution. Dots indicate measuring points on active area. Membrane is oriented such that anode face is up and cathode face is down. Direction of flows of water and products is indicated by arrows. (b) Local distribution of thickness for SWB-membrane no. 3. Column height represents the thickness recorded at the measuring dots. Membrane exhibits hot spots at the thin end (zero values).

Fig. 8. Membrane thinning in a $30 \,\mathrm{cm}^2$ multimembrane laboratory cell: Membrane 1 was facing the cathode, membrane 4 was facing the anode. Ion exchange capacity and thickness of the membranes is given as a percentage of the corresponding values of membranes before use.

"PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants" S. Stucki, G. G. Scherrer, et al. J. Appl. Electrochem. 28 (1998) 1041-1049

AST protocol for membrane chemical stability

PEM Fuel cells: OCV hold

• PEM Electrolysers: ?

Table 3 MEA Chemical Stability and Metrics		
Table revised December 10, 2009		
Test Condition	Steady state OCV, single cell 25-50 cm ²	
Total time	500 h	
Temperature	90°C	
Relative Humidity	Anode/Cathode 30/30%	
Fuel/Oxidant	Hydrogen/Air at stoics of 10/10 at 0.2 A/cm ² equivalent flow	
Pressure, inlet kPa abs (bara)	Anode 150 (1.5), Cathode 150 (1.5)	
Metric	Frequency	Target
F ⁻ release or equivalent for non-fluorine membranes	At least every 24 h	No target – for monitoring
Hydrogen Crossover (mA/cm ²)*	Every 24 h	$\leq 2 \text{ mA/cm}^2$
OCV	Continuous	≤20% loss in OCV
High-frequency resistance	Every 24 h at 0.2 A/cm ²	No target – for monitoring
Shorting resistance**	Every 24 h	>1,000 ohm cm ²

* Crossover current per USFCC "Single Cell Test Protocol" Section A3-2, electrochemical hydrogen crossover method.

** Measured at 0.5V applied potential, 80°C and 100% RH $N_2/N_2.\,$ Compression to 20% strain on the GDL.

USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS, 2010

PEM Fuel cells vs. PEM electrolysers

Peroxide detection using μ -electrodes.

Peroxide detection using μ -electrodes.

Peroxide detection using μ -electrodes.

Convective flux seems to -10 outweigh peroxide 9 diffusion above 1.2 Acm² convection -20 8 Diffusion Peroxide concentrations ۲ 7 -30 will be significant at positions close to the 6 -40 i^{H₂O₂ / µA peak beak} anode, even at high current densities. -50 a, ₂C 90 -60 3 80 70 2 -70 60 50 -80 40 200 0 400 600 800 1000 1200 1400 1600 30 I_{cell} / mA cm⁻² 20 10

0.2

0.4

x/d

0.6

0.8

1.0

0.0

C

Nanostructuring of Ir and Ru

T. Reier, M. Oezaslan, P. Strasser ACS Catal., 2012, 2 (8), pp 1765–1772

Supported vs. unsupported Ir

Supported vs. unsupported Ru

AST – Potential hold vs. voltage cycling

1.55 V 5h

In situ degradation protocols

- Current cycling at 80 °C
- Polarisation curve every 10 h

Long term test – TEM cross section analysis

Ir/ATO - Anode

- A significant part of the Ir catalyst particles has diffused into the membrane
- No diffusion of ATO support into the membrane

Pt/C - Cathode

The interface between the membrane and the Pt/C cathode layer is sharp without any diffusion of particles into the membrane.

Summary

- The move towards cost reduction and efficiency improvements of PEM electrolyser will probably lead to increased degradation
- A lot can be learned / transferred from PEM fuel cells
 - Methodology
 - Diagnostic tools
- However, some degradation mechanisms are different
- Common accelerated stress test protocols (AST) for PEM electrolyser components is needed

Acknowledgments

<u>Co-workers</u>

Luis Colmenares

Partners

Nicolas Guillet, CEA Tomas Klicpera, Fumatech

• <u>Students</u>

Stian Gurrik Amin Zavieh

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreements n° 245252 (NEXPEL) & n° 303484 (NOVEL)

