

Corrosion Resistant Metallic Components for Electrochemical Devices

Fraunhofer ISE, Freiburg, Germany

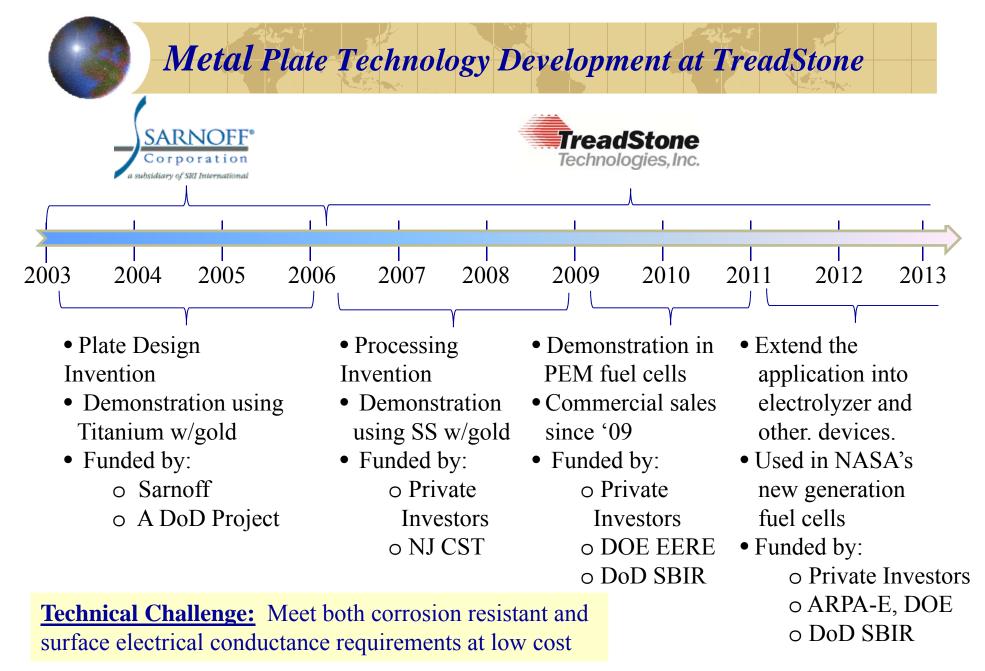
Conghua "CH" Wang

First International Workshop Durability and Degradation Issues in PEM Electrolysis Cells and Its Components March 12, 2013

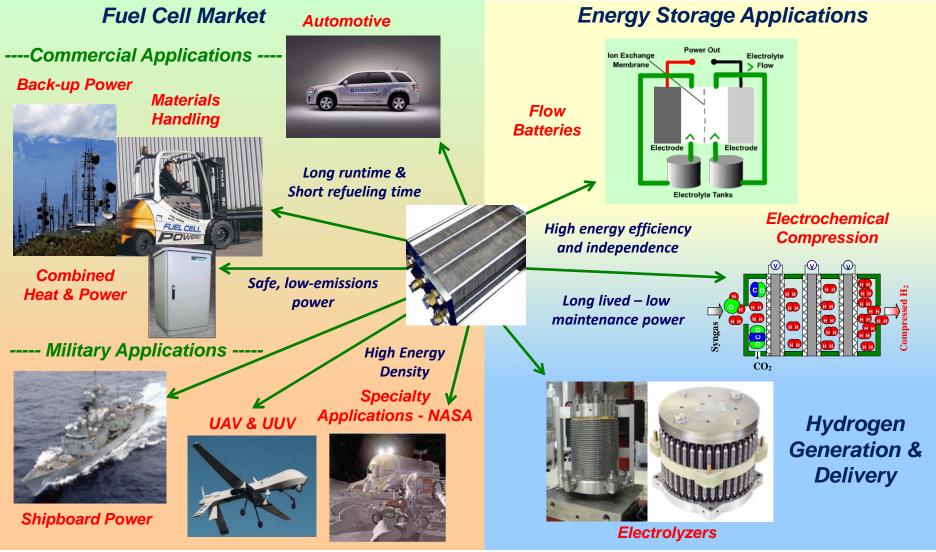
TreadStone Technologies, Inc. 201 Washington Road Princeton, NJ 08540 USA

TreadStone's Background and Mission

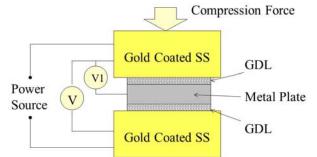
Corporate Background


- TreadStone is a small business technology spin-out of SRI-Sarnoff Corporation in March 2006
- Focused on the technology development for electrochemical power systems
- The core metal corrosion protection technology has been developed for over 8 years. The US Patent (US 7,309,540) was issued on 2007.
- It has been evaluated by various clients for various systems.

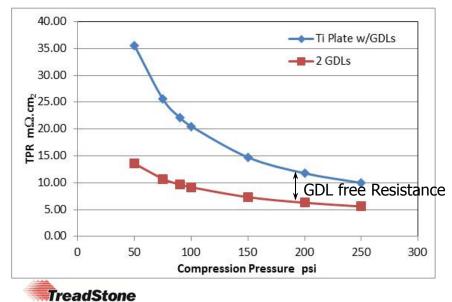
Corporate Mission


Achieving continuous growth in profits, revenue and net worth through the commercialization of new technologies for the energy market.

PEM Electrolysis System Cost Break-down Relevance Cost Reduction: **Overall Cost of Hydrogen** Cell/Stack Design Plate processing technology Cell stack largest contributor to system cost Flowfields, separators and MEAs drive stack cost **TreadStone's** focus Power supplies Balance of plant 32% 48% MEA 53% flow fields and separators 24% 23% balance of cell 15% balance of stack Stack System 3


Dr. K. Ayers, Presentation at DOE Hydrogen Program AMR, May 11, 2011

Metal Plate Performance Evaluation Methods

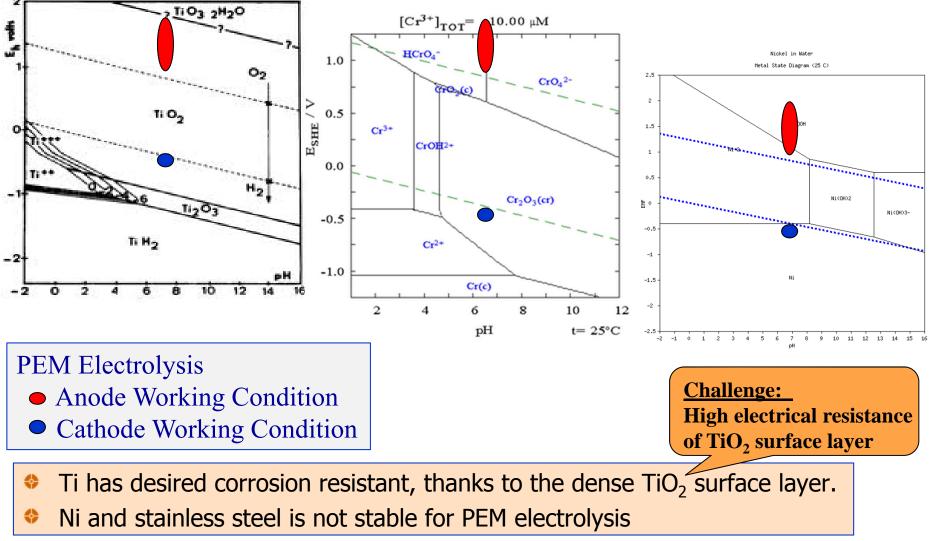

1. Electrical Resistance

Technologies, Inc.

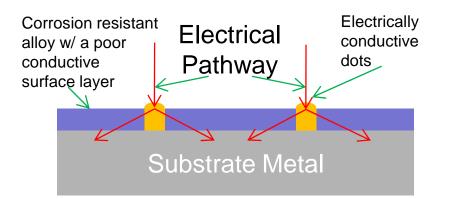

Before and after corrosion tests

Through Plate Resistance (TPR) = V/IContact Resistance (CR) = V_1/I

2. Cell/Stack Performance



3. Hydrogen Absorption


Hydrogen embrittlement failure if $H_2 > 8000$ ppm in Ti

Substrate Material Selection for PEM Electrolysis

Pourbaix Diagram

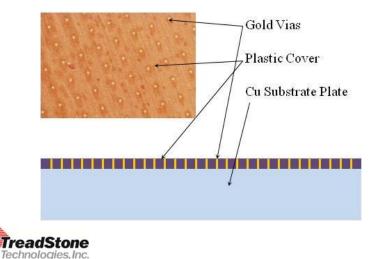
TreadStone' Metal Plate Technologies

Design Feature:

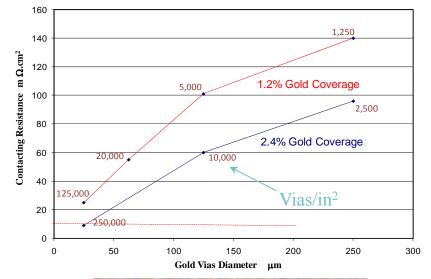
- 1. Using a small amount of electrically conductive and corrosion resistant material to cover a small portion of the substrate surface in the form of isolated vias (dots).
 - Low cost
- 2. Using non-conductive (or poor conductive) material to cover the rest of the substrate surface and separate conductive vias.
 - Eliminate galvanic corrosion
 - Easy processing

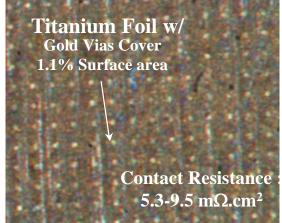
Electrical Resistivity				
Graphite:	1375	μΩ.cm		
Gold:	2.2	$\mu\Omega.cm$		
Silver:	1.6	$\mu\Omega.cm$		

Highly conductive small vias can ensure the sufficient low electrical contact resistance of the metal plates for electrochemical applications

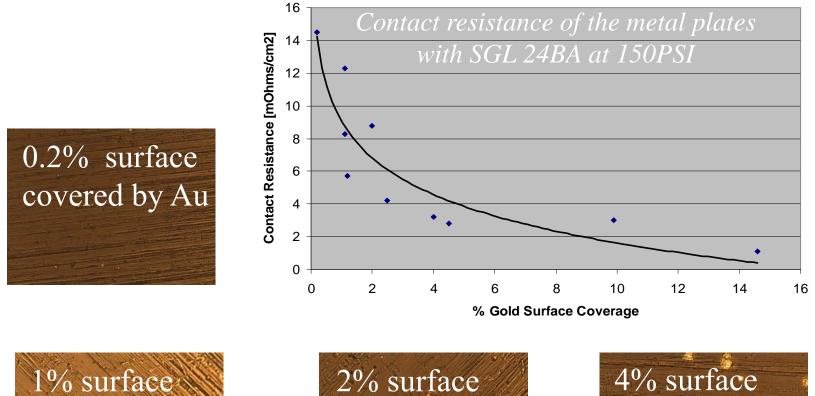


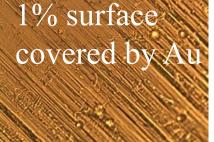
Proof of the Concept Experiments


Experiment Procedure

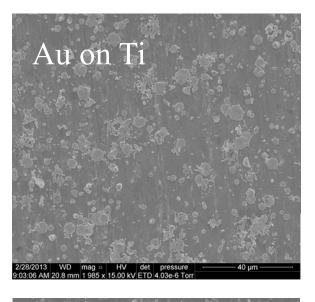

- 1. Plate samples were prepared using Cu plate covered with plastic (photoresist) film.
- 2. Gold vias were processed using photolithography and electrical plating.
- 3. The gold vias size and distribution density were precisely controlled by the photolithography process.
- 4. Contact resistance of GDL with plates having various gold vias were measured

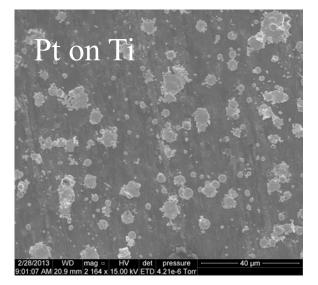
Sample Picture and the Schematic Drawing

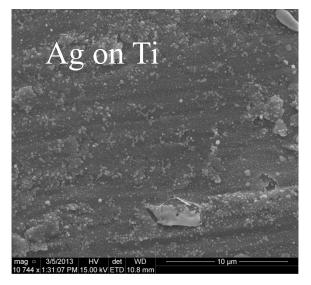


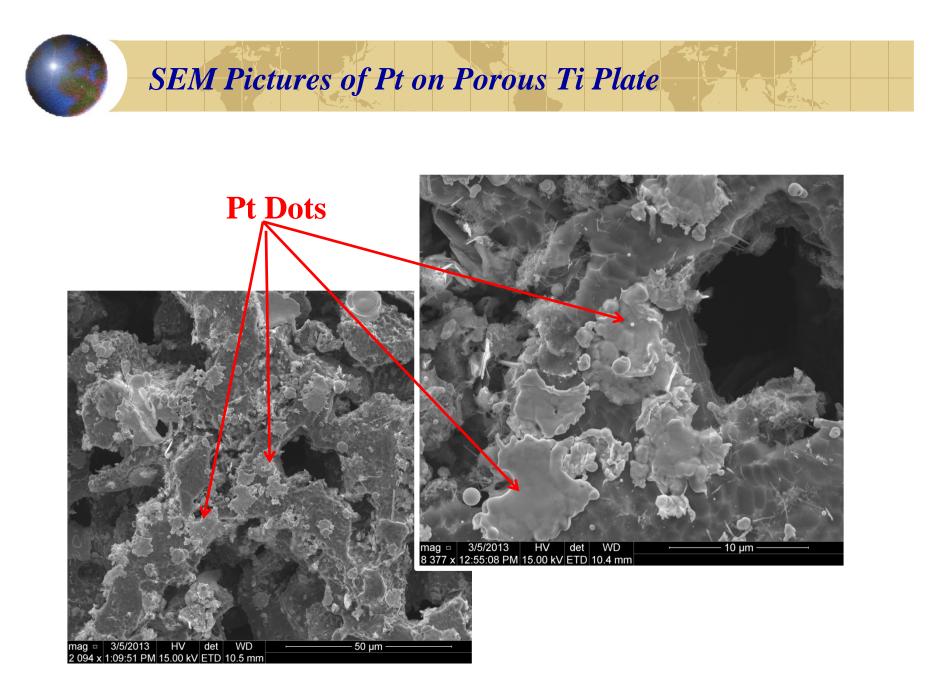

Contact Resistance of GDL with the Cu/Plastic Film/Gold vias Plate

Electrical Contact Resistance vs Gold Coverage

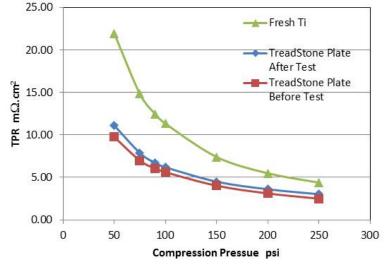





SEM Pictures of Precious Metal on Ti Substrate



Long term Durability Test in PEM Electrolyzers


Under Stable Operation Conditions (1.8-2.0 V/cell)

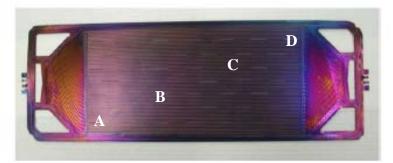
Bipolar Separator Plate	H ₂ pressure (psi)	Time (Hours)	H ₂ uptake (ppm)
TreadStone Ti Bipolar Plate (120 cm ²)*	2400	1000	51
TreadStone Ti Bipolar Plate (250 cm ²)	230	5365	55
Zr/Ti (160 cm ²)	230	500	140
Dual Layer Ti (160 cm ²)	230	500	1105
Ti (as received)	-	0	≈ 60

Under Accelerate Testing Condition for 1000 hrs (high voltage, pressure cycles)

Bipolar Separator Plate	H₂ uptake (ppm)
TreadStone Ti Bipolar Plate (160 cm ²)	160
Dual Layer Ti (160 cm ²)	> 2000

* High pressure stack test was done at Proton Onsite. Others were tested at Giner Ti plate thickness: 0.1-0.15 mm

TreadStone Metal Plates for PEM Fuel Cells


Attribute	Metric	Unit	2015 DOE Target	Ford Data on Au-Dots
Corrosion anode	Current density at active peak in CV	µA/cm ²	<1	No active peak
Corrosion cathode	Current density at 0.8 V_{NHE} in potentiostatic expt.	µA/cm ²	<1	~0.1
Area Specific Resistance	ASR (measured through plane) at 6 bar contact pressure (includes both side surface; doesn't include carbon paper contribution)	mOhm.cm ²	<20	8.70 (as-recd flat samples)
Electrical Conductivity	In-plane electrical conductivity (4-point probe)	S/cm	>100	34 kS/cm
Formability	% elongation (ASTM E8M-01)	%	>40%	53(to RD*)/ 64 (<u> </u> to RD)
Weight	Weight per unit net power (80 kWnet system)	Kg/kW	<0.4	<0.30

*RD: Rolling Direction

Processed 5 plates and measured TPV at 4 locations on each plate

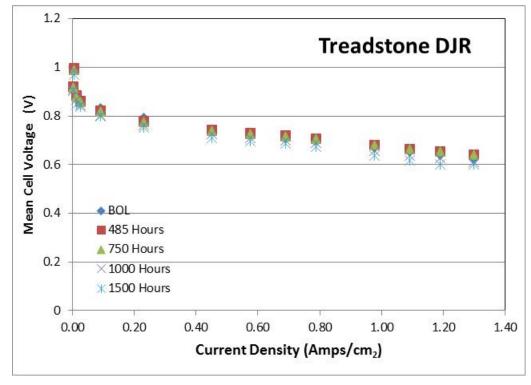
As presented by Ford Motor Company at 2011 Fuel Cell Seminar, Orlando, FL . Nov. 1 2011

	TPV mV (@ 1 A/cm ²)				
Plate #	Α	В	С	D	Average
#1	6.75	6.14	6.64	6.45	6.50
#2	5.36	6.25	6.95	6.60	6.29
#3	7.60	7.12	7.00	6.40	7.03
#4	7.00	6.40	6.00	7.40	6.70
#5	7.60	6.90	7.50	7.50	7.38

The process has met Ford's requirements

Short Stack in-situ Testing at Ford

- TreadStone SS plates w/Au dots were tested in-situ for durability at Ford Motor Company.
- Ford designed metallic bipolar plate w/SS316L as base substrate, 300 cm² active area. TreadStone applied the coating
- 20-cell, 5 kW short stack test:
 - The stack is being tested for durability utilizing durability cycle (which includes FTP cycle along with others) mimicking real world driving conditions.
 - finished 1500 hrs test without degradation. Plan to finish 4000 hrs this year.
 - Took one plate out of the stack every 500 hours for post-test evaluation.


Ford short stack with TreadStone metal bipolar plates

TPR [m Ω .cm²] before and after stack tests

BOL	500 hrs	1000 hrs	
Plate #3	Plate #18	Plate #19	
8.52	5.90	7.21	5.90

Summary

- TreadStone's metal plate technology uses a unique design and processing technique for cost reduction, while meet metal plate's technical requirements (high corrosion resistant & low electrical resistance).
- The technology has been demonstrated several thousand hours stable operation in PEM electrolyzer.
- TreadStone's metal plate technology been demonstrated for low temperature PEM fuel cell applications
- Further development is focused on the process optimization and using lower cost materials for fabrication cost reduction (supported by DOE).
- The investigation of the technology for other electrochemical applications is under way.
- Seeking partnerships to...
 - Enhance commercialization activities
 - Scale process to high volume production

