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Proton OnSite
Manufacturer of packaged products, systems
• Proton Exchange Membrane (PEM) expertise
• H2 generation by water electrolysis
• N generation by membrane and CMS• N2 generation by membrane and CMS
• Founded in 1996
• 100,000 ft2 manufacturing/R&D facility
• ISO 9001:2008 registeredISO 9001:2008 registered 

Over 2000 systems in more than 75 countries
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Proton’s Markets, Products & Capabilities
Power Plants • Complete product development, 

Heat Treating

Semiconductors

Laboratories

p p p ,
manufacturing & testing

• Turnkey product installation
• World-wide sales and service
• Containerization and hydrogen 

t l tiLaboratories

Government

storage solutions
• Integration of electrolysis into RFC 

systems

2011: C-Series

2000:
S-Series
1-2 kg/day
13 b

2006:
HPEM
0.5 kg/day
138 b

2009:
Outdoor
HPEM
2 kg/day

65 kg/day, 30 bar

Steady History of Product Introduction

1999: GC

13 bar

2003:
H S i

138 bar 165 bar

2006:
StableFlow®

2010:
300-600 
mL/min
13 bar

H-Series
4-12 kg/day
30 bar

StableFlow®
Hydrogen 
Control 
System

Lab Line

Over 10 MW Shipped Future Growth from MW Scale PEM Electrolysis
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Over 10 MW Shipped – Future Growth from MW-Scale PEM Electrolysis



Today…
• Proton’s PEM-based hydrogen generators are 

demonstrating excellent reliability in industrial 
li tiapplications

• Cell stack technology is the most reliable 
component in the systemcomponent in the system

• New energy applications present capital as well 
as operating cost challengesas operating cost challenges

• Necessary technology advances are the biggest 
risk to established durability and reliabilityrisk to established durability and reliability

• Meaningful accelerated stress tests could 
reduce that riskreduce that risk
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Critical Needs for Energy Storage

• Renewable energy is growing rapidly world-wide in 
both wind and solar
– Inherent intermittency has more impact as RE becomes a 

larger portion of the grid capacity

– Up to 20-40% of wind energy can be stranded without storage

• Need generation technologies for storing excessNeed generation technologies for storing excess 
renewable capacity & balancing loads on the grid

• Energy storage can also provide a linkage between• Energy storage can also provide a linkage between 
utilities & transportation
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H2 Energy Product Attributes
• Reliability – Cannot afford down-time or high replacement 

costs

• Cost – Price targets for energy market apps more difficult 
(Capex vs. Opex)

L d f ll i• Load-following – Need to handle fast response of varying 
renewable power

• Operating Range Need to handle wide variability of• Operating Range – Need to handle wide variability of 
available renewable power
(i.e. 100% turndown)

• Efficiency – Cost of electricity impact (Opex)

• Scale – MW-class electrolysis requiredScale MW class electrolysis required
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PEM Electrolysis Reliability
• Cell Examples:

– Membrane chemical stability
– Catalyst voltage decaySystem Level
– Material oxidation
– H2 embrittlement
– Gas crossover

• Stack Examples:
Stack Level

Stack Examples:
– Active area and seal area 

pressure
– Flowfield component 

tolerances

Cell Level

to e a ces
– Interface differential pressure

• System Examples:
– Operating profile

Reactant purity– Reactant purity
– Power quality
– Electromechanicals 

(sensors, pumps, valves,…)
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Established PEM Stack Durability

~60,000 hour life demonstrated 
in commercial stack designs2.6
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2003 Stack Design:
1.3 A/cm2

200 psig (13 barg)

Proton Energy Systems
In-House Cell Stack Endurance Testing 

New designs have no
detectable voltage decay
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2005 Stack Design:
1.6 A/cm2

1.4
0 10,000 20,000 30,000 40,000 50,000 60,000

Operating Time (Hours)

Non Detectable Decay Rate

>20,000 hour life
demonstrated at 165 bar in 
high pressure stack designhigh pressure stack design

Strong lineage to low 
pressure design
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Cell Stack Reliability – Over the past 6 yrs…
Part Quality: 292Million Cell HoursPart Quality: 292 Million Cell Hours

Total Cells Replaced

Hundreds of millions 
of cell-hours of fieldTotal Cells Replaced

Original Cells in Operation

of cell hours of field 
experience
>> 99% reliability

Defect Breakdown

90%Customer Contamination
Material Supplier Issue
Misalignment/part defect

Corrective actions 
in place to address 

2 f il d9%

0.31%

Misalignment/part defect
Unknown/System Operation top 2 failure modes
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Technology Roadmap Development

• Clearly defined pathways enable directed research
– Product cell stack and balance-of-plantProduct, cell stack, and balance of plant

• Balance portfolio with near and long term R&D
• Leverage 3rd party funding to subsidize internal R&D

– Utilize military and aerospace as early adopters
– Develop key partnerships to broaden skill base

• Feed into commercial markets as proven• Feed into commercial markets as proven

NSF ARPA- E     DOE-EERE      ONR CERL      TARDEC
U.S. Funding Agencies:

Materials    Feasibility Applied          Deployable Prototypes
research Demonstration R&D

Development Stage/Risk Level
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Cost Reduction Initiatives
Noble Metal Reduction Flow Field CostNoble Metal Reduction Flow Field Cost
3M NSTF 
electrode:
5% of current 1 6
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Electrolysis Membranesy
• Typically 170-250 microns thick versus 25-50 

microns for fuel cellsmicrons for fuel cells
• Need reinforcement to withstand high pressures
• Durability requirements make qualification• Durability requirements make qualification 

challenging
• Accelerated testing: 2000
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Efficiency Needs and Progress: Membrane
• Reduce Membrane Thickness
• Increase Operating Temperature

2 2
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Technology Progression
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Advanced membrane, 80C Current Stack
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Cost Needs and Progress - Catalystg y

• Engineered structures for 
ultra low PGM loadingsultra-low PGM loadings
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Polarization curves: 3M loading < 1/20th baseline, Brookhaven <1/30th loading



Cost Needs and Progress:  Flow Fields
• New bipolar cell assembly design: 50% metal reduction

• Alternative coatings: 
Eliminates process steps
and mitigates hydrogenand mitigates hydrogen
embrittlement
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Flowfield/Bipolar Plate Reliabilityp y

• Typical materials are semi-
precious metals

100%

Baselinep
– Precious metal coatings 

added to reduce resistance
• Susceptible to oxidation 

(anode) or embrittlement
60%

80%

ke
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e Treatment 1

Treatment 2

Nitrided

(anode) or embrittlement 
(cathode) with prolonged 
operation

• Need lower cost alternatives 20%

40%

H
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n 
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Need lower cost alternatives
• Investigating impact of 

process methods & alternative 
non-precious metal coatings 

0%
0 200 400 600 800

Time (h)

on durability Accelerated H2 Exposure Testing
(100 hrs → 10 yr operation)
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Intermittency and Variable Load Input
• Electrolysis is well suited to load following

– Stable performance
– Rapid response time to current signal
– Tolerance to variable power input

50 ms response 
time demonstratedtime demonstrated
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Grid Support Using PEM Electrolysis*
ApproachAC pp
• Simulate deviation on diesel generator-

based AC mini-grid
• Trigger electrolyzer at +/- 0.5 Hz from 

60 Hz add or shed load to stabilize AC

AC 
mini-grid

60 Hz, add or shed load to stabilize AC 
grid by regulating frequency
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Adverse Environmental Conditions

2.10

• Short stack freeze-thaw cycle testing
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Other Reliability Concerns

• Transition to multi-stack systems
– Increased system complexity
– Stack-to-stack interactions

• Power conversion/power quality issues
• Sensing in unique environments

From Single to Multi-Stack SystemsFrom Single to Multi Stack Systems

HOGEN® H Series HOGEN® C Series
Up to three stacks per systemHOGEN®

S Series

HOGEN®

GC
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Summary

• Industrial PEM electrolysis systems have 
excellent reliability track recordexcellent reliability track record

• New energy applications will challenge that 
reliability as technology advancements to drive y gy
cost and reliability are adopted

• Market needs for hydrogen energy storage are 
emerging rapidly

• Development of AST protocols could shorten 
d l t ti hil d i i k i d tdevelopment time while reducing risk in order to 
meet the growing market needs

21


