

Business from technology

Carbon capture – Potentials and barriers in the Nordic countries

Technoport Conference, 16 April 2012 Kristin Onarheim VTT Technical Research Centre of Finland

Outline

- Background
- Carbon capture technologies
- CO₂ capture potential in Nordic countries
- CCS barriers in general
- Challenges and barriers to CO₂ capture in main Nordic industry sectors
- CCS in Finland
- Meri-Pori
- The way forward

Why do we need to capture CO_2 ?

Postcombustion capture (absorption process)

POTENTIALS

- Closest to commercial scale several commercial actors
- CO₂ source/industry irrelevant
- Retrofit suitable and easy
- New generation solvents require less energy – more efficient utilization of lower level heat (improved regeneration)
- Several small scale pilots existing next: Demonstration

CHALLENGES

tic

- Significant CAPEX investment (CO₂ conc.)
- Large drop in plant efficiency (power plant 10 – 15 %-units) – increase in electricity production costs
- Require large amount of chemicals (cost + environmental/health effects)
- Treatment of waste streams
- Equipment corrosion
- Lay-out restrictions in existing plants
- Still at development stage for use in other than (petro)chemical industry
 - Dust levels
 - Amine inhibitors (SOx, NOx, HM)
 - Degradation products (nitrous amines)

Precombustion (decarbonisation) capture

POTENTIALS

- Pressurized CO₂ capture mature
- Higher CO₂ content (15 60 vol-%)
- Physical solvents (20 40 bar)
- Less expensive capture technology (stripping of CO₂ from pressurized processes)
- Lowest drop in plant efficiency compared to other capture technologies
- Worldwide development mainly focused on IGCC and NGCC
- Potential for development

CHALLENGES

- Mainly for IGCC, NGCC, natural gas reforming and production of H₂
- Combustion of H₂ in gas turbine still in development phase
- CAPEX in line with competing technologies
- Issues related to IGCC technology
 - Technological barriers
 - Complicated IGCC process not mature – expensive
 - Only few IGCC plants operating
 - IGCC not yet commercially successful

 $\textbf{CO-shift: CO + H}_2\textbf{O} \rightarrow \textbf{H}_2\textbf{+}\textbf{CO}_2$

6

Oxyfuel (O₂/CO₂ recycle) combustion capture

POTENTIALS

- High CO₂ concentration
- Moderate energy penalty
- Development potential: Large energy requirements for production of O₂ (e.g. membranes)

CHALLENGES

- Primarily applicable only to new power plants
- Technical challenges
 - Operational conditions
 - Overall availability even without CCS
 - Impurity levels
- Requires ASU and handling of O₂
 - Safety
 - CAPEX
 - High energy demand

Air separation

8

Nordic CO_2 emissions > 0,1 Mt/a (2007)

9

Barriers to CCS in general

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

/05/2012

21 9

10

<u>Stabilizing at 450 ppmv</u> Cumulative Global Carbon Stored Between 2010-2050: ~ 100,000 MtCO₂

(CCS: 18% from global electricity production) [IEA 2008, ACT-scenario]

> <u>Stabilizing at 550 ppmv</u> Cumulative Global Carbon Stored Between 2005 and 2050: 33,000 MtCO₂

World CCS Projects Projected Lifetime CO₂ Storage • 0-10 MtCO₂ • 10-20 MtCO₂ • 20-30 MtCO₂ • 250 Million tons CO₂ • (approximate amount CO₂ • storage needs of one 1000MW IGCC operating or • 50 years

12: BESTER Stabilizing at 550 ppmv Cumulative U.S. Carbon Stored In Section 2005 and 2050: 17: Section 2000, MtCO₂

[Joint Global Change Research Institute Pacific Northwest National Laboratory Battene, 12, 2000]

GTK

Deployment of carbon capture in different industrial sectors

Industry	Technologies	Potentials	Barriers	Deployment	Cost
Power production	Post-combustion Pre-combustion Oxy-fuel combustion Advanced	Large sector and large point sources Most focus/development Carbon intensity of power production	Efficiency drop Low CO ₂ concentration EU ETS allowance price	Mostly developed Scale-up to commercial	Base case
Iron and steel	Post-combustion Oxygen Blast Furnace (OBF)	Current processes are dependent on coal Large point source emission	Carbon leakage CO_2 neutral steel plant is not possible within feasible frames	NER 300 – OBF Demonstration: European steel producers, France Pilot plant Sweden	Potentially lower
Cement and lime	Post-combustion Oxy-fuel combustion Calcium Looping Cycle	Local end-product market High CO ₂ concentration	No carbon leakage – local markets Flue gas contaminants No power production	Little research No project experience	Potentially lower
Pulp and paper	Post-combustion Pre-combustion	28% of Nordic CO_2 emissions Potentially high CO_2 concentration Carbon sink	Carbon leakage Biogenic CO_2 Small point source emissions Limited potential in Europe	No industrial initiatives	Higher cost
Oil and gas	Post-combustion Pre-combustion	Large emissions Close to storage Technology knowledge EOR Waste heat available	(Carbon leakage) – refineries? Location/space limitations	Existing	Potentially lower (drying and compression only)

12

CCS activities in Finland

- CCS Finland (2008 2011)
- 2008 2010 : FINNCAP Meri-Pori CCS demonstration project
- 2011 2015 : National Carbon Capture and Storage Program CCSP
- Largest CO₂ production plant: Neste Oil Refinery
 - Aga Linde produces 400 000 t/a CO₂ for commercial use PSA capture from steam reformer
- Development of power plant concept with CCS
- Industry-driven development of oxy-fuel combustion for fluidized bed boilers
- Development of mineral carbonization processes
- No underground storage possibilities in Finnish ground
 - Baltic Sea, North Sea or Barents sea
- No plans for large-scale projects in near future

FINNCAP Meri-Pori

- Joint demonstration project Fortum and Teollisuuden Voima (TVO)
- 565 MW coal-fired condensing power plant
- 1,25 Mt/a CO₂ (50% of flue gases with 90% capture) 1,5% of Finnish CO₂ emissions in 2007
- 500 M€ project EU NER 300
- Financial
 - Investment would not be feasible
 - NER 300 application not submitted
- Strategic
 - Change of strategy CCS no longer core business
 - No large-scale focus on CCS in the future

14

The way forward

- Technology development energy penalty (more efficient use of lower level heat)
- Risk management
 - Development in site selection methods
 - Development in measuring, monitoring and verification of stored CO₂
- Succeeding in CCS technology demonstrations 2010 2020
- Increased competitive power of CCS technology compared to other emission reducing methods
- Long-term political decisions
- International commitment \rightarrow consumers pay
- Ensuring storage stability and safety
- Public acceptance and awareness

Courtesy of Statoil, 2010

Thank you for your attention

kristin.onarheim@vtt.fi