INDUSTRIAL INSTALLATION AND TESTING OF AN INNOVATIVE CATALYST SYSTEM FOR NOx REMOVAL IN WTE UNITS
Brescia - Ancient city

Historical centre

Augustus emperor Capitolium 70 A.D

Brescia - Ancient city
COMPANY OVERVIEW (2005 data)

- Electricity: 2,710 Gwh
 - Generation
 - W.T.E.
 - Transmission
 - Distribution
 - Trading
 - Sale
 - Public Lighting

- District heating: 1,159 Gwh
 - Generation
 - Distribution
 - Sale

- Gas: 779 Mm3
 - Import
 - Transmission
 - Distribution
 - Sale

- Water: 89,8 Mm3
 - Sourcing
 - Distribution
 - Sewage
 - Sewage treatment

- Waste Management: 1,193 Mt
 - Collection
 - Street cleaning
 - Disposal
ASM Spa

- **Share holding utility**

- **Since July 2002 listed in Milan stock exchange**

- **69 % of shares owned by Brescia municipality (200,000 inhab.)**

- **Employees nr.:** 2100

- **Revenues (year 2005):** 1,672 M€
OPERATIONS DATA 2005

Treated waste
757,000 tons
(of which biomass 290,000 tons)

Electricity production (net)
510 GWh\textsubscript{el}

District heating
491 GWh\textsubscript{th}

Fossil fuels saving (Tons of Oil Equivalent)
> 150,000 TOE

CO\textsubscript{2} avoided emissions
> 400,000 tons
DISTRICT HEATING SYSTEM OF BRESCIA
(Dec, 31st 2005)

523 km of double pipe
>130,000 inhabitants supplied
36.5 Mm³ heated buildings
15,110 connected buildings
695 MWth
223 MWel
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

MAIN DATA

- Heat capacity of treated waste (3 boilers)
 \[2 \times 88.3 + 1 \times 100 = 276 \text{ MW}_{\text{waste}}\]

- Waste throughput \[3 \times 33 \text{ t/h}\]

- Electric generation capacity \[75 \text{ MW}_{\text{el}}\]

- Heat generation capacity \[160 \text{ MW}_{\text{th}}\]

- INVESTMENT \[300 \text{ M€}\]

- Waste disposal fee \[65 \text{ €/t}\]

- ISO 14001 Environmental certification in april 2006
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)
NOx CONTROL METHODS

• PRIMARY (NOx prevention)
 - staged combustion (gradual O₂ supply)
 - combustion temperature control

• SECONDARY (NOx reduction)
 - SNCR (Selective Non-Catalytic Reduction)
 - SCR (Selective Catalytic Reduction):
 - “Tail-end” (after gas cleaning)
 - “Low dust” (after gas de-dusting)
 - “High dust” (on raw gas)
IMPLEMENTED NOx CONTROL IN BRESCIA WTE
(since 1998)

• PRIMARY
 - low combustion excess air
 - 30 compartment grate
 - infrared camera for optimization of primary and secondary air supply
 - flue gas recirculation
 - combustion air preheating

• SECONDARY (NOx reduction)
 - SNCR (NH$_3$ injection with 27 nozzles, positioned at three levels)
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

SNCR DENOX SYSTEM

SNCR

Fabric filter

Aqueous ammonia

FLUE GAS RECIRCULATION
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

FLUE GAS CLEANING
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

STACK EMISSIONS

<table>
<thead>
<tr>
<th></th>
<th>PLANT AUTHORIZATION LIMITS</th>
<th>PLANT DESIGN DATA</th>
<th>EUROPEAN UNION LIMITS</th>
<th>ACTUAL OPERATION DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>All values in mg/Nm³ (except for Dioxin - ng/Nm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Values referred to dry gas, normal conditions, 11 % O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulate matter</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>0,4</td>
</tr>
<tr>
<td>Suplhure doxide</td>
<td>150</td>
<td>40</td>
<td>50</td>
<td>6,5</td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td><80</td>
</tr>
<tr>
<td>Chlorine acid (HCl)</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>3,5</td>
</tr>
<tr>
<td>Fluorine acid (HF)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>100</td>
<td>40</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>2</td>
<td>0,5</td>
<td>0,5</td>
<td>0,01</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>0,1</td>
<td>0,02</td>
<td>0,05</td>
<td>0,002</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0,1</td>
<td>0,02</td>
<td>0,05</td>
<td>0,002</td>
</tr>
<tr>
<td>PAH (Policyclic aromatic hydrocarbon)</td>
<td>0,05</td>
<td>0,01</td>
<td>-</td>
<td>0,00001</td>
</tr>
<tr>
<td>Dioxin (TCDD Teq) ng/Nm³</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,002</td>
</tr>
</tbody>
</table>
SCR system downstream of a non-wet Flue Gas Treatment showing heat exchange and temperature profiles
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

INSTALLATION AND TESTING OF A SCR “HIGH DUST” SYSTEM
(non industrially available yet)

GOALS:

- further NOx reduction
- ammonia slip improvement
- lowering ammonia consumption
- keep high energy plant efficiency
SCR “HIGH DUST” SYSTEM
(non industrially available yet)

PROBLEMS:
- catalyst clogging
- catalyst poisoning

ADVANTAGES:
- much higher energy efficiency (no need of gas reheating and lower gas pressure losses)
- simpler installation
- lower investment and operating cost
The "NextGenBioWaste" Project

"Innovative demonstrations for the next generation of biomass and waste combustion plants for energy recovery and renewable electricity production"

• Funded by the European Commission (6th Framework Research Program)
• Project duration: 2006-2010 (48 months)
• Budget: 29 M€
NextGenBioWaste Project
(Consortium: 17 partners from 7 countries)

Co-ordinator:
SINTEF Energiforskning AS (NO)

Partners:
- Afval Energie Bedrijf, Amsterdam (NL)
- ASM BRESCIA SPA (IT) (16% share – 4.5 M€ SCR HD)
- Gemeinschaftskraftwerk Schweinfurt GmbH (DE)
- Joint Research Centre of the EC (NL)
- KEMA (NL)
- Max-Planck-Institute (DE)
- N.V. Afvalverwerking Rijnmond (NL)
- SEGHERS Keppel Technology Group (BE)
- SINTEF Energiforskning AS (NO)
- SVUM, a.s., Prague (CZ)
- TNO (NL)
- Trondheim Energiverk Fjernvarme AS (NO)
- Vattenfall AB Business unit Nordic Heat (SE)
- Vattenfall Europe Waste to Energy GmbH (DE)
- Vattenfall Power Consultant AB (SE)
- Vattenfall Utveckling AB (SE)
- Visser & Smit Hanab (NL)
HIGH DUST SCR LOCATION

TERMOUTILIZZATORE
(The waste to energy plant of Brescia)
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

SPACE FOR SCR HIGH DUST INSTALLATION
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

HIGH DUST SCR LAYOUT

CATALYST LAYER
(SPACE FOR UP TO 5 LAYERS)

MIXER

DAMPERS

NOx

FLUE GAS
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

SCR “HIGH DUST”

FIRST TEST RESULTS

• operation: started 2006 Mar. (1st phase – one cat. layer)
• inspection: 2006 Sep.
• 2nd phase: started 2006 Oct.
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

HIGH DUST SCR RESULTS (1 LAYER)

SCR Catalyst Effect

Reduction:
~ 31 mg/Nm³
= 40%

NO (as NO₂) [mg/Nm³]

NO before cat.
NO after cat.

Antonio Bonomo – WTERT 2006.10.19
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

HIGH DUST SCR RESULTS (1 LAYER)

Start of the test

NOx – NH3 consumption – ammonia slip

NH3 slip
NOx
NH3 consumption [l/h]
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

HIGH DUST SCR RESULTS (1 LAYER)

SCR Catalyst Pressure Loss

~ 0.35 mbar

Antonio Bonomo – WTERT 2006.10.19
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

CATALYST AFTER 5 MONTHS OF OPERATION
1 SCR LAYER (5 months operation):

- NOx: 80 → ~50 mg/Nm³
- NH₃ slip: 12 → 4 - 8 mg/Nm³
- NH₃ consumption: 0.22 → 0.18 m³/h (25% concentrated)

2 SCR LAYER (2 weeks operation – very preliminary!):

- NOx: → ~40 mg/Nm³
TERMOUTILIZZATORE
(The waste to energy plant of Brescia)

HIGH DUST SCR

- monitoring of fouling and activity of catalyst
- optimization of catalyst layout (single / multiple layers)
- optimization of dust cleaning
- testing of different NH₃ injection points
- testing of NH₃ air vs. water injection
- lifetime assessment of the catalyst
- industrial cost evaluation