N. Chiesa, M. Korpås, O. E. Kongstein, A. Ødegård

Dynamic control of an electrolyser for voltage quality enhancement

Outline

- 1. Introduction
- 2. Electrical system & Simulation model
- 3. Dynamic regulation of hydrogen production
- 4. Case studies
- 5. Conclusion

The research leading to these results has received funding from the <u>Fuel Cells and Hydrogen Joint</u> <u>Undertaking</u> under grant agreement n° 245262 – NEXPEL

NEXPEL main objective:

Develop and demonstrate a PEM water electrolyser integrated with RES: 75% Efficiency (LHV), H₂ production cost ~ €5,000 / Nm³h⁻¹, target lifetime of 40,000 h

Hydrogen Production from RES

- Hydrogen production attractive for integration in wind turbine systems
 - Re-conversion is economically challenging
 - Hydrogen used locally
- "Smart" operation of electrolyser
 - Improvement of power quality at PCC
 - Reduction of system losses

Demonstrate the feasibility and advantages achievable from the integration of an electrolyser system for the production of hydrogen in a renewable energy system (RES)

Electrolyser Technology

• Fluctuating power output of RES influence the operation of electrolyser.

"classical operation": power fluctuations to grid, constant power to electrolyser "smart operation": electrolyser absorbs fast fluctuations, grid receives smooth power

- → electrolyser with flexible operating capabilities
- <u>Large atmospheric alkaline electrolyser</u>: due to long response time (several minutes) are designed to operate at constant power.
- <u>Pressurized alkaline electrolyser</u>: faster response time, current interruption leads to increased degradation rate (min load 25-50%).
- <u>Polymer electrolyte membrane (PEM) electrolyser</u>: fast response time, no degradation with stop-start cycles, higher energy efficiency. Promising but immature technology, expected life time of 10 years.

Electrical System

• Simplified representation of a possible island system: wind turbine and electrolyser connected to a relatively weak grid

Best wind resources often found in areas with weak grid connection to the main transmission grid: voltage variation and thermal limits may put a significant limit on the realizable wind power generation. Representative for several location along the Norwegain coast: high wind speed, low local electricity demand. Hydrogen from electrolysis can be considered for local and sea transport.

Simulation Model: Wind

- Stochastic wind speed: Kaimal model
 - Average wind speed = 7.5 m/s
 - Standard deviation = 1.0 m/s
 - 60 s window
- General wind turbine aerodynamic torque model with 3P effect
- Squirrel cage induction generator (SCIG)

Simulation Model: Electrolyser

- Electrolyser: dynamic equivalent model
 - U_{rev}: reversible potential of water splitting reaction
 - R_{Ω} : ohmic resistance of the cell
 - R_{ct}: charge transfer resistance
 - C_{dl}: double layer capacity
 - Parameters based on in-house measurements on an alkaline electrolyser
- Electrolyser converter: average model
 - Three-phase, two-level PWM converter
 - Switching effect phenomena averaged over the switching period

R_{ct}

 R_0

Urev

Dynamic Regulation of the Hydrogen Production

• Three-phase current reference for the electrolyser converters current conteoller is generated based on active and reactive power references.

Dynamic Regulation of the Hydrogen Production

- Electrolyser converter used to compensate the reactive power fluctuation (STATCOM-like)
- Indirect control of the bus voltage: reactive power measured at the generator Q_{off}

- Direct voltage control:
 - Droop function and load compensation units may be added

Dynamic Regulation of the Hydrogen Production

- Strategy used for Q control is not very flexible for P control: constant offset
- Flexible control strategy:
 - compensates (fast) active power fluctuation
 - allows slow variation

Case Studies

• Nine case studies with different control strategies:

	Case	E wind	E grid	E ely	E loss line	E loss Ely	Kg H2	Nm3 H2	E H2
		[kWh]	[kWh]	[kWh]	[kWh]	[kWh]	[kg]	[Nm3]	[kWh]
	1: No Ely	12.3	10.5	0.00	1.78	0.00	0.00	0.00	0.00
	2: Ely Max	12.3	3.08	8.23	0.998	3.04	0.16	1.74	5.2
	3: Ely Max, Q comp	12.3	3.17	8.15	0.997	3.00	0.16	1.72	5.15
>	4.1: 100% reserve	12.3	6.33	4.82	1.16	1.58	0.1	1.08	3.24
	4.2: 50% reserve	12.3	5.01	6.22	1.08	2.13	0.12	1.37	4.09
	4.3: 20% reserve	12.3	3.78	7.53	1.01	2.71	0.14	1.61	4.82
	5.1: Const Ely at E_H2 of 4.1	12.3	6.28	4.82	1.21	1.53	0.1	1.10	3.29
>	5.2: Const Ely at E_H2 of 4.2	12.3	5.02	6.22	1.08	2.12	0.12	1.37	4.09
	6: 50% reserve, V control	12.3	4.98	6.2	1.14	2.13	0.12	1.36	4.07

Electrolyser reduces the losses in the line, but high conversion losses: electrolyser efficiency is crucial

Hydrogen production only slightly affected by best dynamic control strategies

Dynamic vs. Constant electrolyser power: no increased losses and same H2 production

Indirect vs. Direct voltage control: almost identical average behavior

Case Studies

Cost Analysis

- Simplified cost analysis of the wind-electrolyser system with the best control strategies
 - The simulated 60 second time period is taken as basis for the economic calculations, by assuming it to be representative for one year
 - The total annual wind generation then sums up to 5534 MWh for the 2 MW turbine, corresponding to a capacity factor of 32 %
 - Economical estimates based on an electricity price 50 €/MWh, a hydrogen price 5 €/kg and an electrolyser total cost of 5 000 €/Nm3. The margin and the payback time are calculated with reference to the case with no electrolyser. 0&M costs are not considered.
- Payback time between 2 to 3 years.

Conclusion

- Demonstration of possible and "smart" use of an electrolyser in a RES
- Voltage quality at PCC is improved by introducing an electrolyser with flexible operating capabilities
- Modelling approach and analysis tools demonstrated in the paper are valuable instruments for the investigation, planning and evaluation of future possibilities for the integration of hydrogen and wind energy technologies
- Economical considerations demonstrate that at today's electricity prices and expected hydrogen prices, the production of hydrogen from wind energy can become economically feasible
- Can the improved power quality and/or the improved wind energy utilization defend the extra costs of a larger electrolyser required for dynamic control? Other alternatives are flywheel energy storage or reinforcing the local grid
- The effect of dynamic vs. constant load on the electrolyser on the aging rate of the stack need to be further verified (lifetime)

Technology for a better society

