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for voltage quality enhancement

The research leading to these results has received 
funding from the Fuel Cells and Hydrogen Joint 
Undertaking under grant agreement n° 245262 – NEXPEL 



SINTEF Energy Research

NEXPEL main objective: 
Develop and demonstrate a PEM water electrolyser integrated with RES:

75% Efficiency (LHV), H2 production cost ~ €5,000 / Nm3h-1, target lifetime of 40,000 h

New membrane materials

New catalysts Improved MEAs

Novel stack design and new
construction materials

Improved DC-DC 
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• Hydrogen production attractive for integration in wind 
turbine systems

• Re-conversion is economically challenging

• Hydrogen used locally

• “Smart” operation of electrolyser

• Improvement of power quality at PCC

• Reduction of system losses
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Hydrogen Production from RES

Demonstrate the feasibility and advantages 
achievable from the integration of an 

electrolyser system for the production of 
hydrogen in a renewable energy system (RES)
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• Fluctuating power output of RES influence the operation of electrolyser.

• Large atmospheric alkaline electrolyser: due to long response time (several minutes) are 
designed to operate at constant power.

• Pressurized alkaline electrolyser: faster response time, current interruption leads to 
increased degradation rate (min load 25-50%). 

• Polymer electrolyte membrane (PEM) electrolyser: fast response time, no degradation with 
stop-start cycles, higher energy efficiency. Promising but immature technology, expected 
life time of 10 years.
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Electrolyser Technology

“classical operation”: power 
fluctuations to grid, constant 

power to electrolyser

“smart operation”: electrolyser 
absorbs fast fluctuations, grid 

receives smooth power
 electrolyser with flexible 

operating capabilities
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• Simplified representation of a possible island system: wind turbine and electrolyser 
connected to a relatively weak grid
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Electrical System
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Best wind resources often found in areas 
with weak grid connection to the main 

transmission grid: voltage variation and 
thermal limits may put a significant limit 
on the realizable wind power generation.

Representative for several location along 
the Norwegain coast: high wind speed, low 

local electricity demand. Hydrogen from 
electrolysis can be considered for local 

and sea transport.
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• Stochastic wind speed: Kaimal model

• Average wind speed = 7.5 m/s

• Standard deviation = 1.0 m/s 

• 60 s window 

• General wind turbine aerodynamic torque model 
with 3P effect

• Squirrel cage induction generator (SCIG)
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Simulation Model: Wind
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• Electrolyser: dynamic equivalent model

• Urev: reversible potential of water splitting reaction

• RΩ: ohmic resistance of the cell

• Rct: charge transfer resistance

• Cdl: double layer capacity

• Parameters based on in-house measurements on an 
alkaline electrolyser

• Electrolyser converter: average model

• Three-phase, two-level PWM converter

• Switching effect phenomena averaged over the 
switching period
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Simulation Model: Electrolyser
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• Three-phase current reference for the electrolyser converters current conteoller is 
generated based on active and reactive power references.
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Dynamic Regulation of the Hydrogen Production
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• Electrolyser converter used to compensate the reactive power fluctuation (STATCOM-like)

• Indirect control of the bus voltage: reactive power measured at the generator - Qoff

• Direct voltage control:

• Droop function and load compensation units may be added
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Dynamic Regulation of the Hydrogen Production
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• Strategy used for Q control is not very flexible for P control: constant offset

• Flexible control strategy: 

• compensates (fast) active power fluctuation

• allows slow variation

• maximize hydrogen production rate
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Dynamic Regulation of the Hydrogen Production

Calculation of offset 
reference signal. Target: 

average Pely = Pset

Increase the regulator 
dynamic response when 

maximum regulation 
ranges are exceeded
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• Nine case studies with different control strategies:
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Case Studies

Case 
E wind E grid E ely 

E loss 
line 

E loss 
Ely 

Kg H2 Nm3 H2 E H2 

[kWh] [kWh] [kWh] [kWh] [kWh] [kg] [Nm3] [kWh] 

1: No Ely 12.3 10.5 0.00 1.78 0.00 0.00 0.00 0.00 

2: Ely Max 12.3 3.08 8.23 0.998 3.04 0.16 1.74 5.2 

3: Ely Max, Q 
comp 

12.3 3.17 8.15 0.997 3.00 0.16 1.72 5.15 

4.1: 100% 
reserve 

12.3 6.33 4.82 1.16 1.58 0.1 1.08 3.24 

4.2: 50% 
reserve 

12.3 5.01 6.22 1.08 2.13 0.12 1.37 4.09 

4.3: 20% 
reserve 

12.3 3.78 7.53 1.01 2.71 0.14 1.61 4.82 

5.1: Const Ely 
at E_H2 of 4.1 

12.3 6.28 4.82 1.21 1.53 0.1 1.10 3.29 

5.2: Const Ely 
at E_H2 of 4.2 

12.3 5.02 6.22 1.08 2.12 0.12 1.37 4.09 

6: 50% reserve, 
V control 

12.3 4.98 6.2 1.14 2.13 0.12 1.36 4.07 

 

Electrolyser reduces the losses in 
the line, but high conversion losses: 

electrolyser efficiency is crucial  

Hydrogen production only slightly 
affected by best dynamic control 

strategies

Dynamic vs. Constant electrolyser 
power: no increased losses and same 

H2 production

Indirect vs. Direct voltage control: 
almost identical average behavior
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Case Studies

2: Constant max
H2 production

4.1: 100% reserve,
PQ ctr, fix offset 

4.2: 50% reserve,
PQ ctr, dyn. offset

6: 50% reserve,
PV ctr, dyn. offset
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• Simplified cost analysis of the wind-electrolyser 
system with the best control strategies

• The simulated 60 second time period is taken as 
basis for the economic calculations, by assuming it to 
be representative for one year

• The total annual wind generation then sums up to 
5534 MWh for the 2 MW turbine, corresponding to a 
capacity factor of 32 %

• Economical estimates based on an electricity price 50 
€/MWh, a hydrogen price 5 €/kg and an electrolyser 
total cost of 5 000 €/Nm3. The margin and the 
payback time are calculated with reference to the 
case with no electrolyser. O&M costs are not 
considered.

• Payback time between 2 to 3 years.
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Cost Analysis
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• Demonstration of possible and “smart” use of an electrolyser in a RES

• Voltage quality at PCC is improved by introducing an electrolyser with flexible operating 
capabilities

• Modelling approach and analysis tools demonstrated in the paper are valuable 
instruments for the investigation, planning and evaluation of future possibilities for the 
integration of hydrogen and wind energy technologies

• Economical considerations demonstrate that at today’s electricity prices and expected 
hydrogen prices, the production of hydrogen from wind energy can become economically 
feasible 

• Can the improved power quality and/or the improved wind energy utilization defend the 
extra costs of a larger electrolyser required for dynamic control? Other alternatives are 
flywheel energy storage or reinforcing the local grid

• The effect of dynamic vs. constant  load on the electrolyser on the aging rate of the stack 
need to be further verified (lifetime)
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Conclusion
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Technology for a better society
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