PEM Water Electrolysis - Present Status of Research and Development

Review Lecture – Session HP.3d

Tom Smolinka Fraunhofer-Institut für Solare Energiesysteme ISE

18th World Hydrogen Energy Conference 2010 Essen, May 18, 2010

Agenda

- Background of PEM water electrolysis activities at Fraunhofer ISE
- Fundamental of PEM water electrolysis
- Electrodes and Membrane Electrode Assembly
- Cell design and stack construction
- System layout and efficiencies
- Comparison to alkaline water electrolyser (Conclusion and summary)

The Self-sufficient Solar House in Freiburg ...

- ... begin of R&D activities in PEM electrolysis at Fraunhofer ISE
- First developments in the eighties
- Field test: 1992-1995
- Complete hydrogen storage system consisting of:
 - PEM electrolyser
 (30 bar / 2 kW_{el})
 - H₂ and O₂ pressure tanks
 - PEM fuel cell

The Self-sufficient Solar House in Freiburg ...

Regenerative fuel cell:

- PEM electrolysis unit (30 bar / 2 kW_{el})
- H_2/O_2 storage tanks
- PEM fuel cell
- No mech. compressor!

For more than 20 years experience in PEM electrolysis

- Material characterisation
- Cell and stack design
- Balance of plant
- **Control strategies**
- **Power electronics**
- Integration with RES
- System evaluation

Schematic of a PEM electrolysis cell

6

Schematic of a PEM electrolysis cell

Anode reaction: $H_2O \rightarrow 0.5 O_2 + 2H^+ + 2e^-$ Cathode reaction: $2H^+ + 2e^- \rightarrow H_2$ Total reaction: $H_2O \rightarrow H_2 + 0.5 O_2$

endothermal reaction

Decomposition of water

→ Cell voltage affected by temperature and pressure

The core component: Membrane Electrode Assembly

Membrane

- Thickness: 100 300 μm (e.g. Nafion 117)
- Coated on both sides with catalysts
- Reinforcement possible

Cathode

- Loading: 1.0 2.0 mg/cm²
- Pt black or Pt/C based

Anode

- Loading: 1.0 4.0 mg/cm²
- Mostly Ir, Ru, Pt, (oxide) based

Cross Section of a MEA (Fraunhofer ISE) and reinforecd DMS membrane (Giner)

Performance of a PEM electrolysis cell

VII characteristics of a standard Nafion based MEA from SolviCore measured in a 25 cm² laboratory electrolysis cell (Fraunhofer ISE)

Alternative catalysts for the anode

Optimised MEAs	Metal (M)
$Ir_1Ru_2O_xM_{0.1}$ —	Fe
$Ir_1Ru_2O_xM_{0.1}$	Ni
$Ir_1Ru_2O_xM_{0.1}$	Со
$Ir_1Ru_2O_xM_{0.1}$	Sn

Cell efficiency:

$$\varepsilon = \frac{V_{_{HHV}}(T,p)}{V_{_{OP}}(T,p)}$$

 Efficiencies > 95% at 1000 mA/cm² reported in literature

V/i characteristic @ 80°C / 1 atm, cathode: Pt black (Fraunhofer ISE)

Current collectors/distributors

Challenge:

Porous, electrically conductive and corrosionresistant material

Solution:

- Sintered Ti powder (a)
- Sintered Ti felt (b)
- Expanded Ti mesh (c)
- Carbon-based paper (d)

From cell design ...

- Corrosion-resistant materials
 - Titanium
 - Coated metals
 - Plastic-composite
- Pressure-resistant cell design
 - Metal-cutting production
 - Frame construction
 - Die cutting
 - Metal-laminate
 - injection molded
 - Structured plates with applied gaskets

(Hamilton Sunderstrand, Fraunhofer ISE)

... to stack construction for PEM water electrolyser

- Filter press configuration
- Pressure resistance: up to 207 bar
- Active area:
 10 750 cm²
- Current density: up to 2.5 A/cm²
- Cell voltage: max. 2.2 V
- Number of cells: < 120</p>
- H₂ production rate:
 2 Nl/h 30 Nm³/h
- Power input per stack: up to 160 kW_{el} (estimated)

14

Long-term performance of PEM electrolysis stacks

Typical stack life time

- 5,000 20,000 h in a system
- Stack replacement: every 5 - 9 years
- In military applications up to 100,000 h reported

Hydrogenics 91E stack

PEM electrolysis system = stack + balance of plant

BoP more simple and less expansive

Commercial PEM electrolyser

Compared to alkaline systems low H_2 production rates:

- 100 Nml/min 15 Nm³/h today
- Up to 30 Nm³/h in the near future
- H_2 output at 6 30 bar and purified up to 6.0
- Applications:
 - Laboratory equipment (e.g. gas chromatography)
 - Generator cooling in power plants
 - Float glas manufacturing and further industrial processes (food industry)
 - Military (submarines) and space

17

How efficent are PEM electrolysers?

- Prefered measure: specific power consumption in kWh/Nm³ H₂
- High efficiencies on stack level
- Moderate efficiencies on system level (low H₂ production rates)

Comparison of alkaline and PEM electrolysers

- Comparable young technology, still high potential for further improvement
- Principle advantages:
 - Simple system configuration
 - Very high current and power densities
 - High efficiencies on cell level
 - Very fast response time, suitable for coupling with RES
- Usage of expensive materials (membrane, electrodes, bipolar plates)
- Attractive competitive position for small electrolysis units << 100 Nm³/h
 - How large will PEM electrolysers become in the next 10 years??

Comparison of alkaline and PEM electrolysers

- Current density
- Power density
- Efficiency (system)
- System complexity
- Durability / Life cycle
- Investment costs

Manufacturer of water electrolysers - Who is on the road?

This figure does not claim to be exhaustive!

21

NEXPEL main objective:

Develop and demonstrate a PEM water electrolyser integrated with RES: 75% Efficiency (LHV), H₂ production cost ~ €5,000 / Nm³h⁻¹, target lifetime of 40,000 h

Thank you for your kind attention!

Tom Smolinka Fraunhofer ISE Heidenhofstr. 2 / 79110 Freiburg / Germany Ph: +49 761 4588 5212 tom.smolinka@ise.fraunhofer.de www.ise.fraunhofer.de

Questions?

