MODELS OF HYDRAULIC SYSTEMS IN HYDRO POWER PLANTS

Alexandra Lucero, Siemens AS, Trondheim
Ola Helle, NTNU, Department of Electric Power Engineering
Bjørnar Svingen, Rainpower Technology AS, Trondheim
Trond Toftevaag, SINTEF Energy Research
Kjetil Uhlen, NTNU, Department of Electric Power Engineering
Models of Hydraulic Systems in Hydro Power Plants

Outline

• About the work
• Background
• Problem
• Objective
• Hydro Power Plants – general layout, modelling and models
• Simulation tools
• Simulation results
• Conclusions
• Further Work
• References
About the work

• This work has been carried out follows:
 • As part of an internal project at SINTEF Energy Research
 • As part of Project and Master-thesis work at NTNU, Department of Electric Power Engineering:
 • Alexandra Lucero: autumn 2009 (Project) - spring 2010 (Master)
 • Ola Helle: autumn 2010 (Project) - spring 2011 (Master)

• Supervisors:
 • Kjetil Uhlen, NTNU, Dept of Electric Power Engineering
 • Bjørnar Svingen, Rainpower Technology AS, Trondheim
 • Trond Toftevaag, SINTEF Energy Research, Trondheim
Background

- Small-signal (or small-disturbance) problems in interconnected power systems involve rotor angle stability, such as:
 - Electromechanical (rotor angle) oscillations of a generator swinging against the rest of the power system (local plant mode osc)
 - Oscillations of a group of generators swinging against another group of generators (interarea mode oscillations)
 - Typical frequency range: 0.3 – 2.5 Hz
- Hydraulic systems in hydro power plants may show oscillatory behaviour with resonant frequencies in the same range - typically elastic mode "waterhammer" oscillations for medium to large head plants
Problem

• Based on the above observations:
 • Can interaction occur between the electric power system and the hydraulic system for this frequency range?
 • Which possible consequences can such interaction have?
 • How to mitigate such interaction?
Objective

- To identify and/or develop, analyse, implement and test models of hydraulic systems in power plants via literature survey and computer based simulations

- Identify the characteristics necessary to be met on the models in order to recreate the (possible) low-frequency interaction between the electric power system and the hydraulic system

- The work should be limited to turbines of type Francis
Hydro Power Plants – General layout

- Reservoir
- Tunnel
- Surge shaft
- Penstock
- Main valve
- Generator
- Turbine
A hydro power plant can be represented by the following subsystems:

- penstock including any surge tank
- hydraulic machine
- speed governor
- generator and the electrical power system
- tailrace
Hydro Power Plants - Models

The following three hydro plant models with different characteristics and limitations, are discussed in this presentation:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Classical Penstock-Turbine Model for ideal lossless Hydraulic Turbine</td>
</tr>
<tr>
<td>2</td>
<td>Turbine Model with Surge Tank assuming Elastic Water Column in Penstock and Inelastic Water Column in Tunnel</td>
</tr>
<tr>
<td>3</td>
<td>Turbine Model with Surge Tank including Elastic Water Column in Penstock and turbine coefficients</td>
</tr>
</tbody>
</table>
Classical Penstock-Turbine Model for ideal lossless Hydraulic Turbine

The classical penstock-turbine model is widely used in relevant literature related to power system stability and in standard model libraries in power system analysis software. This is the most simplified model.

Turbine Model with surge tank assuming Elastic Water Column in Penstock and Inelastic Water Column in Upstream Tunnel

The model includes elastic water column in penstock and inelastic water column in upstream tunnel. The nonlinear characteristics of hydraulic turbine are not considered in this model.

Turbine Model with surge tank including Elastic Water Column in Penstock and Turbine Coefficients

This model includes the hydraulic turbine coefficients extracted from the Hill Charts. (See e.g. Ref. [4]).

Simulation tools

- **LVTrans**
 - Tool for modelling and simulation of hydro Power Plants
 - Developed at SINTEF Energy Research

- **SIMPOW®**
 - Power system simulation and analysis tool
 - Developed by STRI (originally by ABB)

- **Matlab/SIMULINK**
 - MATLAB® is a high-level language for technical computing. The uses include math and computation, modeling, simulations, etc.
Simulations - Results

Amplitude response

- Klassisk modell
- Modell 2, Uten turbin parametre
- Modell 3, Med turbin parametre
- Lvtrans
Conclusions

• The Classical model fails to give accurate results, and does not represent the (possible) interaction between the electric side and the hydraulic side.
• The models including the water hammer effect and surge tank gives good correspondence with LVTrans simulations (believed to have the highest accuracy and best representation of actual conditions)
• Model 2 shows best performance at lower frequencies (<1 Hz), while model 3 shows best performance at higher frequencies (> 1 Hz).
• Proper representation of the (possible) interaction between the electrical system and the hydraulic system is achieved by using model 3 – i.e. model which includes the turbine coefficients
Further Work

• Improve the model including the turbine parameters - model 3 - for lower frequencies, as well as for the resonance peaks at 2.2 and 2.78 Hz

• Integrate the hydraulic system models into a dynamic power system simulation model with the aim to study possible low-frequency interaction

• Measurements in real-life power plant(s)

• Identify consequences of such (possible) interaction phenomena in hydro power plants
References

