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NanoSim – EU FP7 Project

• A Multiscale Simulation-Based Design Platform for Cost-
Effective CO2 Capture Processes using Nano-Structured
Materials (NanoSim)

• Connect models at different

scales

• Reduce time spent on

materials development

• To accelerate rationale

development of CO2 capture

processes

• To demonstrate the techno-

economic competitiveness of

CO2 capture process based on

Chemical Looping Reforming

using Nano-Structured

materials
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Objective of the Current Work

• Identify the thermodynamic potential of a Chemical 

Looping Reforming (CLR) process

• Exergy analysis of Chemical Looping Reforming (CLR) 

and conventional Partial Oxidation (POX) process

• Comparison of Exergy Destruction in CLR and POX at 

different operating conditions
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Chemical Looping Reforming (CLR)

Me + 
1

2
O2 → MeO

CH4 + MeO → CO + 2H2 + Me

• Where Me/MeO is the

metal oxygen carrier

system

• Side reactions occur

to yield fractions of

CO2 and H2O
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Chemical Looping Reforming

• Pre-combustion CO2 Capture

• Inherent Air Separation

• Process Intensification

• Operates at fairly low temperatures

• Gives higher H2/CO ratio when compared to

conventional partial oxidation process
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Thermodynamic Analysis - Exergy

Exergy

• Maximum useful work that can be derived from a system

• A method to account for irreversibilites in a system

ED = ∑ EQ – WCV + ∑ Ei - ∑ Ee

EQ = Q (1- T/To)

Where
• Q – Heat transfer across the system

• T – Temperature of the system

• To – Ambient Temperature

• EQ – heat transfer exergy

• WCV – Work done by the system

• Ei, Ee – Total exergy of the streams In and Out respectively

• ED – Exergy destroyed in the system
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Methodology

Chemical Looping Reforming Partial Oxidation
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Methodology

ExD% = (ED/ECH4)*100

Where
• ED – Exergy destroyed in the system

• ExD% - Percentage of exergy destroyed

• ECH4 – Chemical exergy of fuel (CH4)

Assumptions and Considerations:

• Air is considered a binary mixture of 21% O2 and 79 % N2 (mole fractions)

• Ni/NiO has been considered as the metal-metal oxide system

• Work input to Air Separation Unit (ASU) =  28.51 kJ/mol O2 (0.25 kWh/kg O2)

• Equilibrium data at different conditions have been taken from ASPEN Plus

• Reactions considered to proceed with minimization of Gibbs Free Energy principle

• Peng Robinson Equation of State has been considered

• Heat transfer across the system boundary occurs at constant temperature
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Results and Discussion

Partial Oxidation

Identifying best way to operate Partial Oxidation
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Reforming
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Results and Discussion

Chemical Looping Reforming 

Identifying best way to operate Chemical Looping Reforming

Complete 
Combustion

Complete 
Combustion

T TReforming
Reforming
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Results and Discussion

Partial Oxidation (POX) vs Chemial Looping Reforming (CLR)

Temperature of reactor exit streams at adiabatic conditions

POX

CLR

POX

CLR

Reactor

Conditions

Adiabatic
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Results and Discussion

Temperature of exit streams suited to water gas shift reaction

POX

CLR

POX

CLR

Partial Oxidation (POX) vs Chemial Looping Reforming (CLR)

Reactor

Conditions

Adiabatic

+

Heat 

Exchanger

after the

Reactor
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Results and Discussion

CH4 Conversion and H2/CO ratio

POX

CLR

POX

CLR

Partial Oxidation (POX) vs Chemial Looping Reforming (CLR)
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Results and Discussion

High Metal Circulation Rate in Chemical Looping 

Reforming at constant O2 input (0.75 mol O2 / 1 mol CH4)

ExD%

%CH4 Conversion

H2/CO Ratio
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Conclusions

• CLR seems to be a promising new method, with small
thermodynamic losses and without the need for an air
separation unit.

• Chemical Looping Reforming can be adiabatic – no need for
external supply of heat

• Exergy destruction in CLR is less than in POX, since the
temperature of exit streams from POX is very high, and
cooling them down to a suitable water gas shift temperature
results in high exergy losses

• CLR reforms CH4 to a product gas with higher H2/CO ratio
when compared to conventional POX
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