

NanoSim: A Multi-scale Simulation Based Design Platform for Cost-Effective CO₂ Capture Processes using Nano-Structured Materials

Stefan Andersson

SINTEF Materials and Chemistry, Trondheim, Norway

stefan.andersson@sintef.no

Stephen Shevlin (UCL), Paul Inge Dahl (SINTEF), Stefan Radl (TU Graz)

SINTEF

- Independent research institute for applied science and technology
- 2000 employees (Norway, Denmark, Brazil, USA)
- Motto: "Technology for a better society"
- Close connections to both industry and academia
- Well integrated with universities in Trondheim and Oslo
- Funding: 7% basic funding, 40% industry, competitive grants (Norway, EU)
- Fields of research
 - Oil and gas (multi-phase flow, enhanced oil recovery)
 - Metallurgy (silicon, manganese, aluminium,...)
 - Marine technology and aquaculture (fisheries)
 - Materials science and engineering
 - CO₂ capture
 - Biotechnology
 - Catalysis
 - Energy technologies (solar cells, batteries, wind,...)
 - Computational science and engineering
 - Construction engineering
 - Civil engineering
 - Medical technology
 - Social sciences (health, economics, safety)

Technology for a better society

"Atomic-scale modeling" staff@SINTEF (Trondheim and Oslo)

- Materials science
- Metallurgy
- Catalysis
- CO₂ capture
- Hydrogen storage
- Solar cells
- Thermoelectric materials
- Combustion
- Multiscale modeling
 - **Kinetics**
 - Thermodynamics
 - Fluid dynamics
 - **Finite element**

Jesper Friis

Espen Sagvolden

Ingvild Thue Jensen

Stefan Andersson

Jonathan Polfus

Francesca Lønstad Ole Martin Løvvik Bleken

Ingeborg-Helene Svenum

Technology for a better society

Roar Olsen

Ole Swang

- EU FP7 grant (2014-2017) (http://www.sintef.no/projectwep/nanosim/)
- Simulation-based design of reactive particles for Chemical Looping Combustion (CLC) and Chemical Looping Reforming (CLR) for power, fuel or chemicals generation with integrated CO₂ capture
- Idea: Embed **reactive nanoparticles** (oxygen carrier) in inert porous micronsized particles to increase reactivity and stability

Main objectives

- Develop an open-source computational platform that will allow the rational design of the second generation of gas-particle CO₂ capture technologies based on nanostructured materials
- **Design** and manufacture **nano-structured materials** and shorten the development process of nano-enabled products based on the multi-scale modelling
- **Design** and demonstrate an **energy conversion reactor** with CO₂ capture based on the superior performance of nano-structured materials

Specific objectives

- Develop an **integrated multi-scale modelling platform** through connection and incorporation of a variety of models at different scales
- Advance the modelling state of the art at each particular scale to ensure accurate simulation of relevant large-scale processes
- **Experimentally validate models** developed at the five defined scales
- Reduce the time spent on materials development by 50% compared to traditional approaches
- Enable and accelerate the rational development of CO₂ capture processes

- 1. Process scale: Techno-economic evaluation
- 2. Equipment scale: 1D phenomenological model
- 3. Cluster scale: CFD (Eulerian)
- 4. Particle scale: CFD (Lagrangian)
- 5. Intra-particle scale: Mass+heat transport, kinetics
- 6. Atomic scale: DFT, Kinetic Monte Carlo
- Experiments: synthesis and test reactor
- Common data handling structure
- Direct coupling of scales 4 and 5

Interaction between atomic-scale and intraparticle scale and experiments

Experimental validation (SINTEF)

Synthesis of stabilised nanoparticles

- Selected OC material in suitable, inert, porous matrix material
- Provides thermal stability and suitable oxygen carrying properties

Impregnation on support

 Provides mechanical strength and suitable flow properties

Experimental validation

- Thermogravimetric redox testing (capacity and kinetics)
- Lab-scale reactor testing
- Provides experimental data to be evaluated against predictions from the NanoSim platform

Modelling (TU Graz)

 Sensitivity analysis with particlescale model to predict nanostructured particle parameters

Experimental validation

 Synthesis of nano-structured oxygen carriers

 Spectroscopic studies of real structures and kinetic properties of these provide input to modelling

Model of reacting nanoparticle

- Diffusion of fuel through porous inert material
- Reaction of fuel with nanoparticle
- Diffusion of fuel through product layer and/or
 - diffusion between solid reactant and product

Oxygen carriers for chemical looping technologies

- ...should ideally have these qualities:
 - High oxygen carrying capacity
 - Fast kinetics of oxidation and reduction under the desired process conditions
 - Enable the **desired degree of fuel combustion** (full or partial, depending on the process)
 - Chemically stable under repeated redox cycling at the process temperature
 - Spherically shaped, and with good fluidisation characteristics (for fluidised bed-type reactors)
 - Robust and resistant against attrition and segmentation
 - No agglomeration of particles under process conditions
 - Resistive to carbon deposition during the reduction step
 - Low-cost
 - Based on material which is available all over the world
 - Based on a simple production process
 - Non-hazardous for humans and environment

Some important criteria

OC couple	Max OC capacity	Toxicity	TM	Reactivity
NiO/Ni	13.63	High	1455	Good
CuO/Cu	12.59	Low	1085	Good
Cu2O/Cu	6.29	Low	1085	Good
Fe2O3/Fe3O4	0.19	Low	1597	Medium
Fe2O3/FeO	5.57	Low	1360	Medium
Fe3O4/FeO	3.79	Low	1360	Medium
Mn2O3/MnO	5.64	Low	1650	Medium
Mn3O4/MnO	3.83	Low	1650	Medium
Co3O4/Co	18.19	High	1495	(unknown)
CoO/Co	13.58	High	1495	(unknown)

- Ni and Co are excluded due to high toxicity (which is greatly enhanced for nanomaterials)
- Cu is excluded due to a low melting temperature, which will also give a high reactivity towards the support

Thermodynamic screening – candidate materials

- Oxygen Carriers (OC):
- Fe/FeO/Fe₃O₄/Fe₂O₃
- $Mn/MnO/Mn_3O_4/Mn_2O_3$
- Good oxygen carrying capacity
- Affordable
- Environmentally friendly
- Suitable melting temperature

- Support material 1:
- $BaAI_{12}O_{19}$
- $SrAl_{12}O_{19}$
- $LaAl_{11}O_{18}$
- LaMgAlO₁₉
- Should thermally stabilise OC
- High thermal stability
- Promising stability towards OC and Support 2

- Support material 2:
- Al₂O₃
- Commercially available in variety of morphologies
- Thermally stable
- High mechanical strength
- Promising stability towards Support 2

Atomic-scale modelling (UCL and SINTEF)

- DFT (VASP)
- Transition state theory (elementary reaction and diffusion steps)
- Kinetic Monte Carlo (overall reaction kinetics)
- New set of scripts: **REMARC** (REaction Mechanism And Rate Calculator)
 - Smoothly translates DFT data to kinetics and thermodynamics for set of reactions
 - Output: direct input for Kinetic Monte Carlo and rate equation models (CHEMKIN/Surface CHEMKIN) and reaction thermodynamics
- **Objectives**: provide input for particle-scale models, interpretation of experiments, and design of oxygen carrier particles
- First test system:
 - Fuel: CH₄
 - Oxygen carrier system: Fe₂O₃ / Fe₃O₄ / FeO

 Modelling Surface Processes occurring during Chemical Loop Reforming of Methane catalysed by Fe-oxides: A first-principles approach

Fe₂O₃: Elementary Reaction Steps

$$CH_{4(g)} \rightarrow CH_{4(ads)}$$
reaction pathway proceeds via
CHO radical¹. $CH_{4(ads)} \rightarrow CH_{3(ads)} + H_{(ads)}$ > Final Step:
 $2CHO_{(ads)} \rightarrow 2CO_{(ads)} + H_{2(g)}$ $CH_{3(ads)} \rightarrow CH_{2(ads)} + H_{(ads)}$ > Other possible adsorbed species:
> H_2O
> OH $CH_{2(ads)} \rightarrow CH_{(ads)} + H_{(ads)}$ $CH_{(ads)} \rightarrow CH_{0(ads)} \rightarrow CHO_{(ads)}$ $CH_{(ads)} \rightarrow C_{(ads)} + H_{(ads)}$ $CH_{(ads)} + O_{(ads)} \rightarrow CHO_{(ads)}$ $CH_{(ads)} \rightarrow C_{(ads)} + H_{(ads)}$ $CH_{(ads)} \rightarrow CHO_{(ads)}$ $CH_{(ads)} \rightarrow CO_{(ads)} + H_{(ads)}$ $CHO_{(ads)} \rightarrow CO_{(ads)} + H_{(ads)}$

OSINTEF

Technology for a better society

Majority of literature suggests CLR

Fe₂O₃: Step 1

Optimised geometries for CH₄ and CH₃+H

 \triangleright Electron density transferred from adsorbates to surface for dissociated state (CH₃+H).

Technology for a better society

Fe₂O₃: Step 1

Free energies of both associative and dissociative adsorption predicted to be unfavourable for T> 0K.

 $\begin{array}{lll} \Delta \mathbf{G}_{\mathsf{bind}}(\mathbf{T})^{\mathsf{CH4}} & \mathcal{CH}_{4(g)} \to \mathcal{CH}_{4(ads)} \\ \Delta \mathbf{G}_{\mathsf{bind}}(\mathbf{T})^{\mathsf{CH3+H}} & \mathcal{CH}_{4(g)} \to \mathcal{CH}_{3(ads)} + \mathcal{H}_{(ads)} \end{array}$

т /к	ΔG _{bind} (T) ^{CH4} /kJ mol⁻¹	ΔG _{bind} (T) ^{CH3+H} /kJ mol⁻¹
0	-7.8	+7.6
773	+166.7	+205.7
873	+188.9	+230.9
1173	+254.3	+305.4

Т	∆G _r (T) ^{gas}	ΔG _r (T) ^{surf}
/К	/kJ mol⁻¹	/kJ mol⁻¹
0	+421.1	+15.4
773	+333.6	+30.9
873	+320.3	+42.0
1173	+279.5	+51.0

First step of CH_4 dissociation is thermodynamically more favourable in the presence of (0001) Fe_2O_3 than in gas phase.

 $\begin{array}{lll} \Delta {\rm G_r}({\rm T})^{\rm gas} & {\cal C} {\cal H}_{4(g)} \to {\cal C} {\cal H}_{3(g)} + {\cal H}_{(g)} \\ \Delta {\rm G_r}({\rm T})^{\rm surf} & {\cal C} {\cal H}_{4(ads)} \to {\cal C} {\cal H}_{3(ads)} + {\cal H}_{(ads)} \end{array}$

Activation barrier of $CH_4 \rightarrow CH_3 + H$

temperature CLR

NTEF

Thermodynamics of other structures

- Calculations on other reactions are ongoing
 - Particular area of concern is that the flat potential energy surface prohibits easy determination of the ground state structure
 - Hard to find vibrationally stable structures
- Approximate thermodynamics for other C-H bond activation events are:
 - 65 kJ/mol ($CH_3 \rightarrow CH_2 + H$)
 - 493 kJ/mol (CH₂ \rightarrow CH+H)
 - 825 kJ/mol (CH→C+H)
- Latter two steps are *highly endothermic*
 - This reflects extraction of lattice oxygen
 - Alternative process involving formation of formaldehyde/formate needs to be investigated

Technology for a better society

Future

- Complete reaction mechanism from DFT
- Kinetic Monte Carlo model for overall reaction
- Derived reaction rate constants for consumption of CH₄ and formation of final products (CO, CO₂, H₂, H₂O)
- First version REMARC scripts released and documented (June 2015)

Acknowledgements

- Funding: EU FP7
- SINTEF
 - Shahriar Amini (coordinator)
 - Paul Inge Dahl
 - Julian Tolchard
 - Abdelghafour Zaabout
 - Ingeborg-Helene Svenum
- Univ. Graz
 - Stefan Radl
- UCL
 - Stephen Shevlin
 - Louise Wright
 - Xiao Guo

